Chasing a quantum anisotropy - with GPUs

Denes Molnar, Purdue University \& Wigner RCP

GPU Day 2019, ELTE, Budapest, Jul 11-12, 2019
continuation of DM, Greene, Wang, arXiv:1404.4119v2

Outline

I. General idea, prior estimates for "quantum v_{2} " anisotropy
II. Recalculation with fewer approximations \rightarrow GPUs
III. Summary and next steps

Heavy ion physics

bang two heavy nuclei together to study the quark-gluon plasma e.g., at Large Hadron Collider (LHC) or Relativistic Heavy Ion Collider (RHIC)

[image: S. Bass]

$<-\longrightarrow \mathcal{O}(10 \mathrm{fm} / c)$
Hydrodynamics
hadron gas

\square
Kinetic theory
/ flight to detectors

RHIC/LHC data indicate that extremely hot ($\sim 10^{12} \mathrm{~K}$) matter is created that behaves hydrodynamically, and has very small specific shear viscosity. e.g., Gale et al, IJMP A28 ('13)

Elliptic flow $\left(v_{2}\right)$

most important observable for hydrodynamic behavior

$$
\varepsilon \equiv \frac{\left\langle y^{2}-x^{2}\right\rangle}{\left\langle x^{2}+y^{2}\right\rangle}
$$

initial spatial anisotropy (ε) converts to final momentum anisotropy $\left(v_{2}\right)$
Common interpretation: hydrodynamic evolution

- initially, $\varepsilon>0$ but $v_{2}=0$
- asymmetric pressure gradients subsequently create nonzero v_{2}
\rightarrow then compare with hydro to measure properties, such as shear viscosity Romatschke \& Luzum, PRC78 ('08), .
but is hydrodynamics justified for fermi-scale systems??

v_{2} from quantum mechanics

Back of envelope estimate:

$$
v_{2} \sim \frac{\left\langle p_{x}^{2}-p_{y}^{2}\right\rangle}{\left\langle p_{x}^{2}+p_{y}^{2}\right\rangle}
$$

from uncertainty relation (for ground state, with $\hbar=1$):

$$
\begin{align*}
& \left\langle p_{x}^{2}\right\rangle \sim 1 / R_{x}^{2}, \quad\left\langle p_{y}^{2}\right\rangle \sim 1 / R_{y}^{2} \\
& \quad \Rightarrow v_{2} \sim \frac{R_{y}^{2}-R_{x}^{2}}{R_{y}^{2}+R_{x}^{2}}=\varepsilon \tag{!}
\end{align*}
$$

as much v_{2} as initial eccentricity, "for free" without any hydro (!)

Of course, at $T>0$ excited states also enter and subsequent expansion matters too (hydro + QM??)

Quantum v_{2} at nonzero T

stat. physics for simple gas: $H=\sum_{i} H_{1}\left(\mathrm{p}_{i}, \mathrm{r}_{i}\right), H_{1}(\mathrm{p}, \mathrm{r})=K(\mathrm{p})+V(\mathrm{r})$
Classically, smooth integrals:

$$
\frac{d N}{d \mathbf{p}}=N \frac{\int d \mathbf{r} e^{-H_{1}(\mathbf{p}, \mathbf{r}) / T}}{\int d \mathbf{r} d \mathbf{p} e^{-H_{1}(\mathbf{p}, \mathbf{r}) / T}}=N \frac{e^{-K(\mathbf{p}) / T}}{\int d \mathbf{p} e^{-K(\mathbf{p}) / T}}=\text { isotropic } \quad \Rightarrow \quad v_{n} \equiv 0
$$

But in QM, level spacing matters:

$$
f(\mathbf{p}) \equiv \frac{d N}{d \mathbf{p}}=\frac{1}{Z} \sum_{j}\left|\psi_{j}(\mathbf{p})\right|^{2} e^{-E_{j} / T}=\text { anisotropic }
$$

for nonrelativistic particle, in 2D harmonic oscillator trap,

$$
v_{2} \approx \frac{\hbar^{2}}{12 k_{B} T M\left\langle r_{x}^{2}\right\rangle} \cdot \frac{\varepsilon}{1+\varepsilon}=\frac{\hbar^{2}}{12 p_{t h}^{2}\left\langle r_{x}^{2}\right\rangle} \cdot \frac{\varepsilon}{1+\varepsilon}
$$

Nonzero

Vanishes only in the $T \rightarrow \infty$ or $M \rightarrow \infty$ or size $\rightarrow \infty$ limits.

Though $v_{2} \neq 0$, there is no hydrodynamic flow anywhere.

$$
\mathcal{L}=\frac{i \hbar}{2}\left(\psi^{*} \dot{\psi}-\dot{\psi}^{*} \psi\right)-\frac{\hbar^{2}}{2 M}\left(\nabla \psi^{*}\right)(\nabla \psi)-V(\mathbf{r}, t) \psi^{*} \psi
$$

apply Noether's theorem:

$$
\begin{align*}
T^{00} & =\frac{\hbar^{2}}{2 M}\left(\nabla \psi^{*}\right)(\nabla \psi)+V(\mathbf{r}, t) \psi^{*} \psi \tag{1}\\
T^{0 i} & =\frac{i \hbar}{2}\left(\psi \nabla_{i} \psi^{*}-\psi^{*} \nabla_{i} \psi\right) \tag{2}\\
T^{i 0} & =\frac{i \hbar}{2 M}\left(\frac{\hbar^{2}}{2 M} \Delta \psi-V \psi\right)\left(\nabla_{i} \psi^{*}\right)+c . c . \tag{3}\\
T^{i j} & =\frac{\hbar^{2}}{2 M}\left\{\left(\nabla_{i} \psi^{*}\right)\left(\nabla_{j} \psi\right)-\frac{1}{2} \delta_{i j}\left[\psi^{*} \Delta \psi+\left(\nabla \psi^{*}\right)(\nabla \psi)\right]\right\}+c . c . \tag{4}
\end{align*}
$$

The HO wave functions are real $\Rightarrow T^{0 i} \equiv 0 \equiv T^{i 0}$

Estimate for ion collisions

$\mathrm{Au}+\mathrm{Au}$ at RHIC: significant intrinsic v_{2} for light hadrons

but notable caveats, such as: nonrelativistic pions vs massless pions \rightarrow question arises where v_{2} for correct $\sqrt{p^{2}+M^{2}}$ would fall...

Relativistic calculation

Single-particle Hamiltonian:

$$
H \equiv K+V=\sqrt{p_{x}^{2}+p_{y}^{2}+M^{2}}+\mu^{3}\left[(1+\alpha) r_{x}^{2}+(1-\alpha) r_{y}^{2}\right]
$$

[μ, α : trap parameters, M : particle mass]
Trick: swap p and r, and rescale

$$
\bar{r}_{x, y} \equiv-\frac{p_{x, y}}{\mu \sqrt{1 \pm \alpha}}, \quad \bar{p}_{x, y} \equiv \mu \sqrt{1 \pm \alpha} r_{x, y}, \quad H \equiv \mu \bar{H}, \quad M \equiv \mu \bar{M}
$$

preserves commutation relations $\left[\bar{r}_{i}, \bar{p}_{j}\right]=i \delta_{i j}$, and Hamiltonian becomes

$$
\bar{H}=\bar{p}_{x}^{2}+\bar{p}_{y}^{2}+\sqrt{(1+\alpha) \bar{r}_{x}^{2}+(1-\alpha) \bar{r}_{y}^{2}+\bar{M}^{2}} \equiv \bar{K}+\bar{V}
$$

same as a nonrelavistic particle in some nontrivial potential (!)
at end μ, α need to be dialed to get desired system size $\left\langle x^{2}\right\rangle$ and $\left\langle y^{2}\right\rangle$

Diagonalize in finite basis

expand over finite basis $\left|\psi_{j}\right\rangle=\sum_{n=1}^{N} c_{j, n}\left|\phi_{n}\right\rangle$
Schrödinger's equation becomes an $N \times N$ generalized eigenvalue problem

$$
\sum_{n} \bar{H}_{m n} c_{j, n}=\bar{E}_{j} \sum_{n} O_{m n} c_{j, m}
$$

with matrix elements and overlaps

$$
\bar{H}_{m n} \equiv\left\langle\phi_{m}\right| \bar{H}\left|\phi_{n}\right\rangle, O_{n m} \equiv\left\langle\phi_{m} \mid \phi_{n}\right\rangle
$$

Here, $\overline{\boldsymbol{H}}_{m n}$ includes

$$
\begin{aligned}
\bar{V}_{m n} & =\int d x d y \phi_{m}(x, y) \phi_{n}(x, y) \sqrt{A x^{2}+B y^{2}+\bar{M}^{2}} \\
& =\int d r r d \varphi \phi_{m}(r, \varphi) \phi_{n}(r, \varphi) \sqrt{r^{2}(C+D \cos 2 \varphi)+\bar{M}^{2}}
\end{aligned}
$$

Need many eigenvectors and eigenvalues in order to construct momentum distribution $f(\mathrm{p}) \propto \sum_{j}\left|\psi_{j}(\mathrm{p})\right|^{2} e^{-E_{j} / T}$, and from that v_{2}

Naive cost: - quadrature (matrix elements): $\mathcal{O}\left(N^{2}\right)$

- diagonalization: $\mathcal{O}\left(N^{3}\right)$
in practice, need $N \sim 200^{2}-500^{2}$
but integration becomes $\mathcal{O}\left(N^{2+\delta}\right)$ if ϕ_{n} involves iterations or integrands oscillate
try moving quadrature to GPUs
- good part: minimal data - few integers in, value \& error out
- bad part: adaptive routines hard on GPU (conditionals, iterative loops)
\rightarrow doing quadrature well helps other physics calculations too e.g., 4D quadrature in kinetic theory DM \& Wolff, PRC95 ('17)

$V_{m n}$ on GPUs

First, some standard tricks:

- factorized basis $\phi_{n}(x, y)=X_{n_{1}}(x) Y_{n_{2}}(y) \quad\left(0 \leq n_{1,2}<M=\sqrt{N}\right)$

$$
\text { or } \phi_{n}(r, \varphi)=R_{n_{1}}(r) F_{n_{2}}(\varphi)
$$

- exploit parity: \bar{V} even in both x and $y \Rightarrow \phi_{n, m}$ must match in parity 4 parity classes $(++,+-,-+,--)$, each with $\approx N / 4$ states. E.g.,

$$
\begin{aligned}
\bar{V}_{n m} & =4 \int_{0}^{\infty} d x X_{n_{1}}(x) X_{m_{1}}(x) \int_{0}^{\infty} d y Y_{n_{2}}(y) Y_{m_{2}}(y) \bar{V}(x, y) \\
& =\int_{0}^{\pi / 2} d \varphi F_{n_{2}}(\varphi) F_{m_{2}}(\varphi) \int_{0}^{\infty} d r r R_{n_{1}}(r) R_{m_{1}}(r) \bar{V}(r, \varphi)
\end{aligned}
$$

Bases: - product of 1D harmonic oscillators $(X \times Y) \rightarrow$ slow $\mathcal{O}\left(N^{3}\right)$ or worse

- 2D polar: $F(\varphi) \propto \cos (k \varphi), \sin (k \varphi) ;$ localized splines for $R(r)$
$\left[R(r) \propto r^{k}\right.$ is ill-conditioned because large overlaps $\left.O_{m n} \sim \mathcal{O}(1)\right]$

Method 1: just do the same as on CPU
2 nested integrals via adaptive 1D routines from GNU Scientific Lib (GSL)

Gauss-Kronrod quadrature (61 points):

$$
\int_{a}^{b} d x f(x) \approx \sum_{i=0}^{60} w_{i} f\left(x_{i}\right)
$$

error estimate: take only half the points $\int_{a}^{b} d x f(x) \approx \sum_{i} \sum_{\text {even }}^{60} w_{i}^{\prime} f\left(x_{i}\right)$
If error large, bisect $[a, b]$ and its bisections, until total error small enough
\rightarrow always bisect interval that has largest error next

```
sketch of iterative 1D quadrature code: }\mp@subsup{\int}{a}{b}dtf(t
sections = alloc_iv(NMAX); // storage for intervals
iv1 = [a,b]; // initial interval
integrate_f(iv1); // get integral and error
n = 0;
while (error_is_big && n < NMAX) {
    sections[n] = iv1;
    i = worst_section(sections); // find interval to split
    ivl = left_half(sections[i]);
    iv2 = right_half(sections[i]);
    integrate_f(iv1); // integrate over both halves
    integrate_f(iv2);
    update_sum_and_error(iv1, iv2); // track total and error
    sections[i] = iv2;
    n ++;
}
```

both loop and search involve conditionals - not that ideal for GPU

Method 2: improve inner loop
empirically: inner integration takes only $\mathbf{1}$ interval ($\approx 2 / 3$ of time) or 2 intervals ($\approx 1 / 3$ of time)
it turns out to be faster to use $\mathbf{2}$ intervals all the time \rightarrow no inner loop
unfortunately, cannot do same for outer loop because φ-integral is oscillatory

$$
\begin{aligned}
& \int_{0}^{\pi / 2} d \varphi \cos m_{1} \varphi \cos m_{2} \varphi \sqrt{C^{\prime}+D^{\prime} \cos 2 \varphi} \\
& \Rightarrow \# \text { of adaptive subdivisions in } \varphi \\
& \text { grows with } m_{1} \text { and } m_{2}
\end{aligned}
$$

Method 3: match threads to workgroups better \rightarrow group by similar runtime needed because OpenCL waits until all threads finish in workgroup

original code did

$$
i d x=n_{2}+M m_{2}+M^{2} n_{1}+M^{3} m_{1}
$$

$$
\begin{aligned}
& \text { for (} \mathrm{m} 1=0 ; \mathrm{m} 1<\mathrm{M} ; \mathrm{m} 1++ \text {) // F_m1 } \\
& \text { for (} \mathrm{n} 1=0 ; \mathrm{n} 1<\mathrm{M} \text {; n1 ++) // R_n1 } \\
& \text { for (} \mathrm{m} 2 \mathrm{=} 0 ; \mathrm{m} 2<\mathrm{M} \text {; m2 ++) // F_m2 } \\
& \text { for (n2 = 0; n2 < M; n2 ++) // R_n2 } \\
& \text { start_task(n1, m1, n2, m2); }
\end{aligned}
$$

instead do

$$
i d x=n_{2}+M n_{1}+M^{2} m_{2}+M^{3} m_{1}
$$

for ($\mathrm{m} 1=0 ; \mathrm{m} 1<\mathrm{M} ; \mathrm{m} 1++$) // F_m1 for (m2 $=0 ; m 2<M ; m 2++$) // F_m2
for ($\mathrm{n} 1=0 ; \mathrm{n} 1<\mathrm{M} ; \mathrm{n} 1++$) // R_n1
for (n2 = 0; n2 < M; n2 ++) // R_n2
start_task(n1, m1, n2, m2);
\Rightarrow more threads with similar m_{1}, m_{2} fall into same workgroup

GPU vs CPU runtime

CPU: Xeon E5-2660 at RCAC Purdue, GPU: Vega 56 at Wigner GPU Lab
absolute time vs problem size \rightarrow GPU looks useful

CPU: Xeon E5-2660 at RCAC Purdue, GPU: Vega 56 at Wigner GPU Lab relative time vs problem size \rightarrow up to $\sim 20 \times$ faster than 1 CPU core

better WGs $\sim 3 \times$
no inner loop $\sim 2 \times$

GPU baseline

Preliminary results

quantum anisotropy in $A u+A u$ at $R H I C$, now with massive, relativistic pions polar $\boldsymbol{r}-\boldsymbol{\varphi}$ basis, $\boldsymbol{N}=\mathbf{2 8 1}^{\mathbf{2}} \rightarrow$ will need $N \sim 400^{2}-500^{2}$ eventually

massive pion v_{2} lies very close to massless case

More ideas / Next steps

- converge vs N, get massive pion v_{2} vs impact param and momentum
- oscillatory φ-integrals:

$$
\int d \varphi\left[\begin{array}{c}
\cos k \varphi \\
\sin k \varphi \\
\sin l \varphi
\end{array}\right] V(r, \varphi)
$$

- change product in integrand to single cosine via $[\cos (a+b) \pm \cos (a-b)] / 2$
- then integrate piecewise over each full period of the cosine can help eliminate adaptive iteration in outer loop for $\boldsymbol{V}_{\boldsymbol{m} n}$ fewer basis fn combinations $\left(m_{1}, m_{2}\right): M^{2} \rightarrow \mathcal{O}(M)$ in matrix elements
- diagonalize with GPU
- at high N, diagonalization cost will dominate
- cannot put it all on GPU (at $N \sim 500^{2}$, answer takes ~ 30 GB RAM) but worthwhile to look into GPU-accelerated linear algebra

Summary

Hydrodynamics is not the only source of momentum anisotropies. Quantum systems with coordinate space anisotropy have, in general, momentum anisotropy (Heisenberg uncertainty relation). Prior calculations for a gas trapped in 2D suggest a sizeable quantum anisotropy for pions in $A u+A u$ collisions at RHIC. [DM, Greene, Wang, 1404.4119v2]

However, the estimates varied by a factor of 3 or more depending on whether nonrelativistic or massless pions were considered. We recalculate the problem with unapproximated $\sqrt{p^{2}+m^{2}}$ kinetic term, using matrix elements computed on GPU. Preliminary calculations for pions show an anisotropy that is very close to the massless result.

Most important lesson:
adapting calculations to GPUs requires one to rethink the problem, which can lead to better algorithms on CPUs as well

