Chasing a quantum anisotropy - with GPUs

Denes Molnar, Purdue University & Wigner RCP

GPU Day 2019, ELTE, Budapest, Jul 11-12, 2019

continuation of DM, Greene, Wang, arXiv:1404.4119v2

Outline

- I. General idea, prior estimates for "quantum v_2 " anisotropy
- II. Recalculation with fewer approximations \rightarrow GPUs
- **III. Summary and next steps**

Heavy ion physics

bang two heavy nuclei together to study the quark-gluon plasma

e.g., at Large Hadron Collider (LHC) or Relativistic Heavy Ion Collider (RHIC)

RHIC/LHC data indicate that extremely hot ($\sim 10^{12}K$) matter is created that behaves hydrodynamically, and has very small specific shear viscosity. e.g., Gale et al, IJMP A28 ('13)

Elliptic flow (v_2)

most important observable for hydrodynamic behavior

initial spatial anisotropy (arepsilon) converts to final momentum anisotropy (v_2)

Common interpretation: hydrodynamic evolution

- initially, arepsilon > 0 but $v_2 = 0$
- asymmetric pressure gradients subsequently create nonzero v_2

 \rightarrow then compare with hydro to measure properties, such as shear viscosity Romatschke & Luzum, PRC78 ('08), ...

but is hydrodynamics justified for fermi-scale systems??

v_2 from quantum mechanics

Back of envelope estimate:

$$v_2 \sim \frac{\langle p_x^2 - p_y^2 \rangle}{\langle p_x^2 + p_y^2 \rangle}$$

from uncertainty relation (for ground state, with $\hbar = 1$):

$$\langle p_x^2 \rangle ~\sim~ 1/R_x^2 ~, ~~ \langle p_y^2 \rangle ~\sim~ 1/R_y^2$$

$$\Rightarrow v_2 \sim \frac{R_y^2 - R_x^2}{R_y^2 + R_x^2} = \varepsilon \quad (!)$$

as much v_2 as initial eccentricity, "for free" without any hydro (!)

Of course, at T > 0 excited states also enter and subsequent expansion matters too (hydro + QM??)

[–] Typeset by Foil $T_{\!E\!}X$ – D. Molnar @ GPU Day 2019, Jul 11-12, 2019

Quantum v_2 at nonzero T

stat. physics for simple gas: $H = \sum_i H_1(\mathbf{p}_i, \mathbf{r}_i), \ H_1(\mathbf{p}, \mathbf{r}) = K(\mathbf{p}) + V(\mathbf{r})$

Classically, smooth integrals:

$$\frac{dN}{d\mathbf{p}} = N \frac{\int d\mathbf{r} \, e^{-H_1(\mathbf{p}, \mathbf{r})/T}}{\int d\mathbf{r} \, d\mathbf{p} \, e^{-H_1(\mathbf{p}, \mathbf{r})/T}} = N \frac{e^{-K(\mathbf{p})/T}}{\int d\mathbf{p} \, e^{-K(\mathbf{p})/T}} = isotropic \quad \Rightarrow \ \mathbf{v_n} \equiv \mathbf{0}$$

But in QM, level spacing matters:

$$f(\mathbf{p}) \equiv \frac{dN}{d\mathbf{p}} = \frac{1}{Z} \sum_{j} |\psi_j(\mathbf{p})|^2 e^{-E_j/T} =$$
anisotropic

for nonrelativistic particle, in 2D harmonic oscillator trap,

arXiv:1404.4119v2

$$v_2 \approx \frac{\hbar^2}{12k_B T M \langle r_x^2 \rangle} \cdot \frac{\varepsilon}{1+\varepsilon} = \frac{\hbar^2}{12p_{th}^2 \langle r_x^2 \rangle} \cdot \frac{\varepsilon}{1+\varepsilon}$$
 Nonzero

Vanishes only in the $T \to \infty$ or $M \to \infty$ or $size \to \infty$ limits.

[–] Typeset by FoilT $_{\! E\! X}$ – D. Molnar @ GPU Day 2019, Jul 11-12, 2019

Though $v_2 \neq 0$, there is no hydrodynamic flow anywhere.

$$\mathcal{L} = \frac{i\hbar}{2} \left(\psi^* \dot{\psi} - \dot{\psi}^* \psi \right) - \frac{\hbar^2}{2M} (\nabla \psi^*) (\nabla \psi) - V(\mathbf{r}, t) \psi^* \psi$$

apply Noether's theorem:

$$T^{00} = \frac{\hbar^2}{2M} (\nabla \psi^*) (\nabla \psi) + V(\mathbf{r}, t) \psi^* \psi$$
(1)

$$T^{0i} = \frac{i\pi}{2} \left(\psi \nabla_i \psi^* - \psi^* \nabla_i \psi \right) \tag{2}$$

$$T^{i0} = \frac{i\hbar}{2M} \left(\frac{\hbar^2}{2M} \Delta \psi - V \psi \right) (\nabla_i \psi^*) + c.c.$$
(3)

$$T^{ij} = \frac{\hbar^2}{2M} \left\{ (\nabla_i \psi^*) (\nabla_j \psi) - \frac{1}{2} \delta_{ij} \left[\psi^* \Delta \psi + (\nabla \psi^*) (\nabla \psi) \right] \right\} + c.c.$$
(4)

The HO wave functions are real $\Rightarrow T^{0i} \equiv 0 \equiv T^{i0}$

Estimate for ion collisions

Au+Au at RHIC: significant intrinsic v_2 for light hadrons 1404.4119v2

but notable caveats, such as: nonrelativistic pions vs massless pions o question arises where v_2 for correct $\sqrt{p^2+M^2}$ would fall...

[–] Typeset by Foil $\rm T_{E}X$ – D. Molnar @ GPU Day 2019, Jul 11-12, 2019

Relativistic calculation

Single-particle Hamiltonian:

7

$$H \equiv K + V = \sqrt{p_x^2 + p_y^2 + M^2} + \mu^3 [(1+\alpha)r_x^2 + (1-\alpha)r_y^2]$$

 $[\mu, \alpha: \text{trap parameters}, M: \text{ particle mass}]$

Trick: swap p and r, and rescale

$$\bar{r}_{x,y} \equiv -\frac{p_{x,y}}{\mu\sqrt{1\pm\alpha}} , \quad \bar{p}_{x,y} \equiv \mu\sqrt{1\pm\alpha} r_{x,y} , \qquad H \equiv \mu\bar{H} , \qquad M \equiv \mu\bar{M}$$

preserves commutation relations $[\bar{r}_i, \bar{p}_j] = i\delta_{ij}$, and Hamiltonian becomes

$$\bar{H} = \bar{p}_x^2 + \bar{p}_y^2 + \sqrt{(1+\alpha)\bar{r}_x^2 + (1-\alpha)\bar{r}_y^2 + \bar{M}^2} \equiv \bar{K} + \bar{V}$$

same as a nonrelavistic particle in some nontrivial potential (!)

at end μ , lpha need to be dialed to get desired system size $\langle x^2
angle$ and $\langle y^2
angle$

[–] Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ GPU Day 2019, Jul 11-12, 2019

Diagonalize in finite basis

expand over finite basis $|\psi_j
angle = \sum_{n=1}^N c_{j,n} |oldsymbol{\phi_n}
angle$

Schrödinger's equation becomes an $N \times N$ generalized eigenvalue problem

$$\sum_{n} \bar{H}_{mn} c_{j,n} = \bar{E}_j \sum_{n} O_{mn} c_{j,m}$$

with matrix elements and overlaps

$$\bar{H}_{mn} \equiv \langle \phi_m | \bar{H} | \phi_n \rangle \ , \ O_{nm} \equiv \langle \phi_m | \phi_n \rangle$$

Here, \bar{H}_{mn} includes

$$\bar{V}_{mn} = \int dx dy \,\phi_m(x,y) \,\phi_n(x,y) \,\sqrt{Ax^2 + By^2 + \bar{M}^2}$$
$$= \int dr r d\varphi \,\phi_m(r,\varphi) \,\phi_n(r,\varphi) \,\sqrt{r^2(C + D\cos 2\varphi) + \bar{M}^2}$$

Need many eigenvectors and eigenvalues in order to construct momentum distribution $f(\mathbf{p}) \propto \sum_{j} |\psi_j(\mathbf{p})|^2 e^{-E_j/T}$, and from that v_2

[–] Typeset by Foil $T_{\!E\!}X$ – D. Molnar @ GPU Day 2019, Jul 11-12, 2019

Naive cost: - quadrature (matrix elements): $\mathcal{O}(N^2)$

- diagonalization: $\mathcal{O}(N^3)$

in practice, need $N \sim 200^2 - 500^2$

but integration becomes $\mathcal{O}(N^{2+\delta})$ if ϕ_n involves iterations or integrands oscillate

try moving quadrature to GPUs

- good part: minimal data few integers in, value & error out
- bad part: adaptive routines hard on GPU (conditionals, iterative loops)
- → doing quadrature well helps other physics calculations too e.g., 4D quadrature in kinetic theory DM & Wolff, PRC95 ('17)

[–] Typeset by Foil $T_{\!E\!}X$ – D. Molnar @ GPU Day 2019, Jul 11-12, 2019

V_{mn} on GPUs

First, some standard tricks:

- factorized basis $\phi_n(x,y) = X_{n_1}(x) Y_{n_2}(y)$ $(0 \le n_{1,2} < M = \sqrt{N})$ or $\phi_n(r,\varphi) = R_{n_1}(r) F_{n_2}(\varphi)$
- exploit parity: \overline{V} even in both x and $y \Rightarrow \phi_{n,m}$ must match in parity
 - 4 parity classes (++, +-, -+, --), each with pprox N/4 states. E.g.,

$$\bar{V}_{nm} = 4 \int_0^\infty dx \, X_{n_1}(x) \, X_{m_1}(x) \int_0^\infty dy \, Y_{n_2}(y) \, Y_{m_2}(y) \, \bar{V}(x,y)$$

=
$$\int_0^{\pi/2} d\varphi \, F_{n_2}(\varphi) \, F_{m_2}(\varphi) \int_0^\infty dr \, r \, R_{n_1}(r) \, R_{m_1}(r) \, \bar{V}(r,\varphi)$$

Bases: - product of 1D harmonic oscillators (X imes Y) o slow $\mathcal{O}(N^3)$ or worse

- 2D polar: $F(arphi) \propto \cos(karphi)$, $\sin(karphi)$; localized splines for R(r)

 $[R(r) \propto r^k$ is ill-conditioned because large overlaps $O_{mn} \sim \mathcal{O}(1)]$

Method 1: just do the same as on CPU

2 nested integrals via adaptive 1D routines from GNU Scientific Lib (GSL)

Gauss-Kronrod quadrature (61 points):

$$\int_{a}^{b} dx f(x) \approx \sum_{i=0}^{60} w_i f(x_i)$$

error estimate: take only half the points $\int_a^b dx f(x) \approx \sum_{i \text{ even}}^{60} w'_i f(x_i)$

If error large, bisect [a, b] and its bisections, until total error small enough \rightarrow always bisect interval that has largest error next

[–] Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ GPU Day 2019, Jul 11-12, 2019

```
sketch of iterative 1D quadrature code: \int dt f(t)
```

```
sections = alloc_iv(NMAX); // storage for intervals
iv1 = [a,b]; // initial interval
integrate_f(iv1); // get integral and error
n = 0:
while (error_is_big && n < NMAX) {</pre>
    sections[n] = iv1;
    i = worst_section(sections); // find interval to split
    ivl = left_half(sections[i]);
    iv2 = right_half(sections[i]);
    integrate_f(iv1); // integrate over both halves
    integrate_f(iv2);
   update_sum_and_error(iv1, iv2); // track total and error
    sections[i] = iv2;
   n ++:
}
```

both loop and search involve conditionals - not that ideal for GPU

Method 2: improve inner loop

empirically: inner integration takes only 1 interval ($\approx 2/3$ of time) or 2 intervals ($\approx 1/3$ of time)

it turns out to be faster to use 2 intervals all the time \rightarrow no inner loop

unfortunately, <u>cannot</u> do same for outer loop because φ -integral is oscillatory

$$\int_{0}^{\pi/2} d\varphi \, \cos m_1 \varphi \, \cos m_2 \varphi \, \sqrt{C' + D' \cos 2\varphi}$$

 \Rightarrow # of adaptive subdivisions in φ grows with m_1 and m_2

<u>Method 3</u>: match threads to workgroups better \rightarrow group by similar runtime

needed because OpenCL waits until all threads finish in workgroup

instead do idx = $n_2 + Mn_1 + M^2m_2 + M^3m_1$ for (m1 = 0; m1 < M; m1 ++) // F_m1 for (m2 = 0; m2 < M; m2 ++) // F_m2 for (n1 = 0; n1 < M; n1 ++) // R_n1 for (n2 = 0; n2 < M; n2 ++) // R_n2 start_task(n1, m1, n2, m2);

\Rightarrow more threads with similar m_1 , m_2 fall into same workgroup

[–] Typeset by FoilT $_{E}$ X – D. Molnar @ GPU Day 2019, Jul 11-12, 2019

GPU vs CPU runtime

CPU: Xeon E5-2660 at RCAC Purdue, **GPU:** Vega 56 at Wigner GPU Lab

absolute time vs problem size \rightarrow GPU looks useful

CPU: Xeon E5-2660 at RCAC Purdue, **GPU:** Vega 56 at Wigner GPU Lab

relative time vs problem size ightarrow up to $\sim 20 imes$ faster than 1 CPU core

Preliminary results

quantum anisotropy in Au+Au at RHIC, now with massive, relativistic pions

polar $r - \varphi$ basis, $N = 281^2 \rightarrow$ will need $N \sim 400^2 - 500^2$ eventually

massive pion v_2 lies very close to massless case

– Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ GPU Day 2019, Jul 11-12, 2019

More ideas / Next steps

- converge vs N, get massive pion v_2 vs impact param and momentum
- oscillatory φ -integrals:

$$\int d\varphi \left[\frac{\cos k\varphi \, \cos l\varphi}{\sin k\varphi \, \sin l\varphi} \right] \, V(r,\varphi)$$

- change product in integrand to single cosine via $[\cos(a+b)\pm\cos(a-b)]/2$

- then integrate piecewise over each full period of the cosine

can help eliminate adaptive iteration in outer loop for V_{mn} fewer basis fn combinations (m_1, m_2) : $M^2 \to \mathcal{O}(M)$ in matrix elements

- diagonalize with GPU
 - at high $N\mbox{, diagonalization cost will dominate}$
 - cannot put it all on GPU (at $N\sim 500^2$, answer takes ~ 30 GB RAM) but worthwhile to look into GPU-accelerated linear algebra

[–] Typeset by Foil $T_{\!E\!}X$ – D. Molnar @ GPU Day 2019, Jul 11-12, 2019

Summary

Hydrodynamics is not the only source of momentum anisotropies. Quantum systems with coordinate space anisotropy have, in general, momentum anisotropy (Heisenberg uncertainty relation). Prior calculations for a gas trapped in 2D suggest a sizeable quantum anisotropy for pions in Au+Au collisions at RHIC. [DM, Greene, Wang, 1404.4119v2]

However, the estimates varied by a factor of 3 or more depending on whether nonrelativistic or massless pions were considered. We recalculate the problem with unapproximated $\sqrt{p^2 + m^2}$ kinetic term, using matrix elements computed on GPU. Preliminary calculations for pions show an anisotropy that is very close to the massless result.

Most important lesson:

adapting calculations to GPUs requires one to rethink the problem, which can lead to better algorithms on CPUs as well

[–] Typeset by FoilT $_{E}X$ – D. Molnar @ GPU Day 2019, Jul 11-12, 2019