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Open quantum systems
▸ Coupling to external environment
▸ Time evolution as Linbladian master equation

▸ Expressed as

▸ Computational cost scales exponentially
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System

Environment

Kasprzak et al., Nature (2006)

Koch et al., PRA (2010)

A. J. Daley, APS Viewpoint (2015)



Lindbladian dynamics
▸ Formal solution

▸ Long-time limit: non-equilibrium steady state (NESS)

▸ ⟹ Variational principle
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What do we need?

Variational ansatz for the density matrix
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Optimization method

Stochastic sampling
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Variational ansatz for the 
density matrix
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▸  

▸ Ansatz: map

▸ Self-adjoint, positive semi-definite form 

▸ What do we use for                    ?

▸  Tensor networks? Jastrow wave-function?

▸ Neural network representation by Carleo and Troyer
[Science 355, 602]



Neural Network Quantum States
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Restricted Boltzmann-machine
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▸  The network is connected by Ising interactions

▸ The probability of a spin configuration is the 
Boltzmann-weight of the Ising Hamiltonian

▸ Connection to tensor networks
[Cirac et al., PRX 8, 011006]

▸  Intrinsically non-local correlations

▸ No dimensionality constraints

▸ High accuracy (representability theorems)



Neural Network Density Matrix
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▸  The representative power depends on the number of hidden nodes and ancillary bits

▸ Numerically efficient, analytical derivatives



What do we need?

Variational ansatz for the density matrix
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Optimization method

Stochastic sampling



Stochastic Reconfiguration (SR) 
for open quantum systems
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▸ Well adapted for Hamiltonian problems [Sorella et al., J. Chem. Phys. 127, 014105]

▸ Efficient and robust

▸ Accounts for the correlation between the variables



Stochastic Reconfiguration (SR) 
for open quantum systems
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▸ Real time evolution

▸ Steady state

▸ SR = Steepest descent if S  is the identity

▸ Euler approximation: 



What do we need?

Variational ansatz for the density matrix
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Optimization method

Stochastic sampling



Stochastic sampling
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Stochastic sampling
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▸ Let’s rewrite the linear system for MCMC sampling



What do we need?

Variational ansatz for the density matrix
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Implementation
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Bottleneck



Implementation

19

Start 
simulation

SR
iteration

MCMC

Update:

,  ,   

MCMC

Update:

,  ,   

MCMC

Update:

,  ,   

MPI

GPUGPUGPU

GPU

GPU SPEED UP: 20X

Nodes:
2 Ivy Bridge 2.6 GHz processors with 8 cores each
4 K40 NVIDIA

Python3.6 on EPFL cluster



Results: Spin lattices
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XYZ Heisenberg model - 2D Rydberg Ising model - 1D

Transverse field Ising model - 1D



XYZ Heisenberg model - 2D - steady state

21

▸ Steady state spin structure factor

Exact

Exact



XYZ Heisenberg model - phase transition
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Rydberg Ising dynamics - 1D
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▸ Magnetization



Transverse field Ising model - 1D
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Conclusion
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▸ Neural network ansatz for open quantum systems

▸ Efficient and robust optimization

▸ Adapted for many-core computing

▸ Results for different spin models

▸ Including phase transition and real time evolution

▸ Working version for bosons



Thank you for your attention!
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Featured
▸ PRL Viewpoint: https://physics.aps.org/articles/v12/74 

▸ EPFL article: https://news.epfl.ch/news/simulating-quantum-systems-with-neural-networks/

▸ Engadget: https://www.engadget.com/2019/07/05/ai-simulates-quantum-systems/

https://doi.org/10.1103/PhysRevLett.122.250501

https://physics.aps.org/articles/v12/74
https://news.epfl.ch/news/simulating-quantum-systems-with-neural-networks/
https://www.engadget.com/2019/07/05/ai-simulates-quantum-systems/


Three flavours of 
machine learning

▸ Labelled data

▸ E.g. handwriting-recognition
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Supervised

Unsupervised

Reinforcement learning

▸ Unlabelled data

▸ E.g. cluster analysis

▸ Generates data, gets feedback, solves the task

▸ E.g. playing go or Variational Monte Carlo



Neural Network Density Matrix
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Neural Network Density Matrix
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