Variational quantum Monte Carlo with neural network ansatz for open quantum systems

Alexandra Nagy

GPU Day

July 11, 2019

Prof. Vincenzo Savona Laboratory of Theoretical Physics of Nanosystems EPFL

11 11

Open quantum systems

- Coupling to external environment
- ► Time evolution as Linbladian master equation

$$\hat{\beta} = \underbrace{-\frac{i}{\hbar} \left[\hat{H}, \hat{\rho} \right]}_{\text{unitary dynamics}} - \underbrace{\sum_{j} \frac{\gamma_{j}}{2} \left[\left\{ \hat{K}_{j}^{\dagger} \hat{K}_{j}, \hat{\rho} \right\} - 2\hat{K}_{j} \hat{\rho} \hat{K}_{j}^{\dagger} \right]}_{\text{dissipative processes}}$$

$$\hat{D} = \{ \hat{K}_{j} \}$$
• Expressed as
$$\hat{\rho} = \mathcal{L}(\hat{\rho})$$
• Computational cost scales exponentially
$$Koch et al., PRA (2010)$$

$$Koch et al., PRA (2010)$$

$$Koch et al., PRA (2010)$$

EPFL

Lindbladian dynamics

Formal solution

$$\hat{\rho}(t) = e^{\mathcal{L}t}\hat{\rho}(0)$$

Long-time limit: non-equilibrium steady state (NESS)

 $\mathcal{L}(\hat{\rho}_{ss}) = \langle \rho_{ss} | \mathcal{L} | \rho_{ss} \rangle = 0$

 $\mathcal{L}^{\dagger}\mathcal{L}(\hat{\rho}_{ss}) = \langle \rho_{ss} | \mathcal{L}^{\dagger}\mathcal{L} | \rho_{ss} \rangle = 0$

What do we need?

What do we need?

Variational ansatz for the density matrix
 Optimization method
 Stochastic sampling

Variational ansatz for the density matrix

- $\mathcal{H} = \{ |\boldsymbol{\sigma}\rangle \} = \{ |\sigma_1, \sigma_2, \dots, \sigma_N \rangle \}$
- Ansatz: map $ho_{\chi}({\pmb\sigma},{\pmb\eta})$
- Self-adjoint, positive semi-definite form

$$\rho_{\chi}(\boldsymbol{\sigma},\boldsymbol{\eta}) = \sum_{j=1}^{J} p_j(\chi) \cdot \psi_j(\boldsymbol{\sigma},\chi) \psi_j^*(\boldsymbol{\eta},\chi)$$

- What do we use for $\psi_j(\boldsymbol{\sigma},\chi)$?
- Tensor networks? Jastrow wave-function?
- Neural network representation by Carleo and Troyer [Science 355, 602]

$$egin{aligned} & (
ho_{1,1} &
ho_{1,2} & \cdots &
ho_{1,n} \ &
ho_{2,1} &
ho_{2,2} & \cdots &
ho_{2,n} \ & dots & dots$$

Neural Network Quantum States

Restricted Boltzmann-machine

$$\psi(\boldsymbol{\sigma}, \chi) = \sum_{\{q\}} e^{\mathcal{H}(\boldsymbol{\sigma}, \{q\})} = \sum_{\{q\}} e^{\left(\sum_{i} a_{i}\sigma_{i} + \sum_{m} b_{m}q_{m} + \sum_{m,i} q_{m}\sigma_{i}X_{mi}\right)} = P(\boldsymbol{\sigma})$$

- The network is connected by Ising interactions
- The probability of a spin configuration is the Boltzmann-weight of the Ising Hamiltonian
- Connection to tensor networks [Cirac et al., PRX 8, 011006]

- Intrinsically non-local correlations
- No dimensionality constraints
- High accuracy (representability theorems)

Neural Network Density Matrix

$$\rho_{\chi}(\boldsymbol{\sigma},\boldsymbol{\eta}) = \sum_{j=1}^{J} p_j(\chi) \cdot \psi_j(\boldsymbol{\sigma},\chi) \psi_j^*(\boldsymbol{\eta},\chi)$$

$$\rho_{\chi}(\boldsymbol{\sigma},\boldsymbol{\eta}) = e^{\left(\sum_{i} a_{i}\sigma_{i}\right)} e^{\left(\sum_{i} a_{i}^{*}\eta_{i}\right)} \times \prod_{l=1}^{L} \cosh\left(c_{l} + \sum_{i} W_{li}\sigma_{i} + \sum_{i} W_{li}^{*}\eta_{i}\right)$$
$$\times \prod_{m=1}^{M} \cosh\left(b_{m} + \sum_{i} X_{mi}\sigma_{i}\right) \times \prod_{n=1}^{M} \cosh\left(b_{n}^{*} + \sum_{i} X_{ni}^{*}\eta_{i}\right)$$

- The representative power depends on the number of hidden nodes and ancillary bits
- Numerically efficient, analytical derivatives

What do we need?

Optimization method

Stochastic sampling

Stochastic Reconfiguration (SR) for open quantum systems

- Well adapted for Hamiltonian problems [Sorella et al., J. Chem. Phys. 127, 014105]
- Efficient and robust
- Accounts for the correlation between the variables

Stochastic Reconfiguration (SR) for open quantum systems

 $\partial_t \chi_k = \sum_{k'} S_{kk'}^{-1} F_{k'}$

Linear system to be solved at each iteration step

Sparse solvers for large number of parameters [Choi et al., SIAM, **33**, 1810]

Real time evolution

$$F_k = -\frac{\partial \langle \langle \mathcal{L} \rangle \rangle}{\partial \chi_k} = -\frac{\partial}{\partial \chi_k} \frac{\langle \rho_{\chi} | \mathcal{L} | \rho_{\chi} \rangle}{\langle \rho_{\chi} | \rho_{\chi} \rangle}$$

Steady state

$$F_k = -\frac{\partial \langle \langle \mathcal{L}^{\dagger} \mathcal{L} \rangle \rangle}{\partial \chi_k} = -\frac{\partial}{\partial \chi_k} \frac{\langle \rho_{\chi} | \mathcal{L}^{\dagger} \mathcal{L} | \rho_{\chi} \rangle}{\langle \rho_{\chi} | \rho_{\chi} \rangle}$$

- ► SR = Steepest descent if S is the identity
- Euler approximation: $\chi(t + \delta t) = \chi(t) + \nu \cdot S^{-1}(t)F(t)$

$$O_{k}(\boldsymbol{\sigma},\boldsymbol{\eta}) = \frac{1}{\rho_{\chi}(\boldsymbol{\sigma},\boldsymbol{\eta})} \cdot \frac{\partial \rho_{\chi}(\boldsymbol{\sigma},\boldsymbol{\eta})}{\partial \chi_{k}}$$
$$F_{k} = \langle \langle O_{k}^{*}\mathcal{L} \rangle \rangle - \langle \langle \mathcal{L} \rangle \rangle \langle \langle O_{k}^{*} \rangle \rangle$$
$$S_{kk'} = \langle \langle O_{k}^{*}O_{k'} \rangle \rangle - \langle \langle O_{k}^{*} \rangle \rangle \langle \langle O_{k'} \rangle \rangle$$

What do we need?

Variational ansatz for the density matrix

Optimization method

Stochastic sampling

Stochastic sampling

Stochastic sampling

Let's rewrite the linear system for MCMC sampling

$$F_{k} = \sum_{\boldsymbol{\sigma},\boldsymbol{\eta}} |\langle \boldsymbol{\sigma}, \boldsymbol{\eta} | \rho_{\chi} \rangle|^{2} \cdot \left(\frac{\partial \ln \langle \boldsymbol{\sigma}, \boldsymbol{\eta} | \rho_{\chi} \rangle}{\partial \chi_{k}} \right)^{*} \frac{\langle \boldsymbol{\sigma}, \boldsymbol{\eta} | \mathcal{L} | \rho_{\chi} \rangle}{\langle \boldsymbol{\sigma}, \boldsymbol{\eta} | \rho_{\chi} \rangle} \\ - \sum_{\boldsymbol{\sigma}, \boldsymbol{\eta}} |\langle \boldsymbol{\sigma}, \boldsymbol{\eta} | \rho_{\chi} \rangle|^{2} \cdot \frac{\langle \boldsymbol{\sigma}, \boldsymbol{\eta} | \mathcal{L} | \rho_{\chi} \rangle}{\langle \boldsymbol{\sigma}, \boldsymbol{\eta} | \rho_{\chi} \rangle} \sum_{\boldsymbol{\sigma}', \boldsymbol{\eta}'} |\langle \boldsymbol{\sigma}', \boldsymbol{\eta}' | \rho_{\chi} \rangle|^{2} \cdot \left(\frac{\partial \ln \langle \boldsymbol{\sigma}', \boldsymbol{\eta}' | \rho_{\chi} \rangle}{\partial \chi_{k}} \right)^{*}$$

What do we need?

Variational ansatz for the density matrix

Optimization method

Stochastic sampling

Implementation

Implementation

Implementation

GPU SPEED UP: 20X

Results: Spin lattices

XYZ Heisenberg model - 2D

$$\hat{\mathcal{H}} = \sum_{\langle i,j \rangle} \left(J_x \hat{\sigma}_i^x \hat{\sigma}_j^x + J_y \hat{\sigma}_i^y \hat{\sigma}_j^y + J_z \hat{\sigma}_i^z \hat{\sigma}_j^z \right)$$
$$\hat{D} = \{ \hat{\sigma}_i^- \}$$

Rydberg Ising model - 1D $\hat{\mathcal{H}} = \frac{U}{2} \sum_{\langle i,j \rangle} \hat{n}_i \hat{n}_j + \Omega \sum_i \hat{\sigma}_i^x$ $\hat{n}_i = \frac{1}{2} (1 + \hat{\sigma}_i^z)$ $\hat{D} = \{\hat{n}_i\}$

I.

Transverse field Ising model - 1D

$$\hat{\mathcal{H}} = J_z \sum_{\langle i,j \rangle} \hat{\sigma}_i^z \hat{\sigma}_j^z + h \sum_i \hat{\sigma}_i^x$$
$$\hat{D} = \{\hat{\sigma}_i^-\}$$

XYZ Heisenberg model - 2D - steady state

$$\hat{\mathcal{H}} = \sum_{\langle i,j \rangle} \left(J_x \hat{\sigma}_i^x \hat{\sigma}_j^x + J_y \hat{\sigma}_i^y \hat{\sigma}_j^y + J_z \hat{\sigma}_i^z \hat{\sigma}_j^z \right)$$
$$\hat{D} = \{ \hat{\sigma}_i^- \}$$

Steady state spin structure factor

$$S_{ss}^{xx}(\mathbf{k}) = \frac{1}{N(N-1)} \sum_{\mathbf{j}\neq\mathbf{l}} e^{-i\mathbf{k}(\mathbf{j}-\mathbf{l})} \langle \hat{\sigma}_{\mathbf{j}}^{x} \hat{\sigma}_{\mathbf{l}}^{x} \rangle$$

EPFI

XYZ Heisenberg model - phase transition

$$\hat{\mathcal{H}} = \sum_{\langle i,j \rangle} \left(J_x \hat{\sigma}_i^x \hat{\sigma}_j^x + J_y \hat{\sigma}_i^y \hat{\sigma}_j^y + J_z \hat{\sigma}_i^z \hat{\sigma}_j^z \right)$$
$$\hat{D} = \{ \hat{\sigma}_i^- \}$$

EPFL

Rydberg Ising dynamics - 1D

$$\hat{\mathcal{H}} = \frac{U}{2} \sum_{\langle i,j \rangle} \hat{n}_i \hat{n}_j + \Omega \sum_i \hat{\sigma}_i^x$$
$$\hat{n}_i = \frac{1}{2} (1 + \hat{\sigma}_i^z)$$
$$\hat{D} = \{\hat{n}_i\}$$

$$M_z = \frac{1}{N} \sum_{i=1}^{N} \operatorname{Tr}(\hat{\rho}\hat{\sigma}_i^z)$$

Transverse field Ising model - 1D

$$\hat{\mathcal{H}} = J_z \sum_{\langle i,j \rangle} \hat{\sigma}_i^z \hat{\sigma}_j^z + h \sum_i \hat{\sigma}_i^x$$
$$\hat{D} = \{\hat{\sigma}_i^-\}$$

 $\alpha = \beta = 1, J_z / \gamma = 0.5, h = 0.5$

Conclusion

- Neural network ansatz for open quantum systems
- Efficient and robust optimization
- Adapted for many-core computing
- ► Results for different spin models
- Including phase transition and real time evolution
- Working version for bosons

Thank you for your attention!

https://doi.org/10.1103/PhysRevLett.122.250501

Featured

- ► PRL Viewpoint: <u>https://physics.aps.org/articles/v12/74</u>
- EPFL article: <u>https://news.epfl.ch/news/simulating-quantum-systems-with-neural-networks/</u>
- Engadget: <u>https://www.engadget.com/2019/07/05/ai-simulates-quantum-systems/</u>

Three flavours of machine learning

EPFL

Supervised

Labelled data

 $[(\mathbf{x_1},\mathbf{y_1}),\ldots,(\mathbf{x_N},\mathbf{y_N})]$

► E.g. handwriting-recognition

Unsupervised

- Unlabelled data
 - $[\mathbf{x_1},\ldots,\mathbf{x_N}]$
- E.g. cluster analysis

Reinforcement learning

• Generates data, gets feedback, solves the task

► E.g. playing go or Variational Monte Carlo

Neural Network Density Matrix

$$\rho_{\chi}(\boldsymbol{\sigma},\boldsymbol{\eta}) = \sum_{j=1}^{J} p_j(\chi) \cdot \psi_j(\boldsymbol{\sigma},\chi) \psi_j^*(\boldsymbol{\eta},\chi)$$

Neural Network Density Matrix

