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P.P.P.

Problems, projects, perspective reserachoutreach.org/Publication 106

This approach is not axiomatic, but application oriented.

@ Complexity, entropy, entropic divergence - how are they related?
@ Entropic f-divergence shrinks even without detailed balance
@ Resets + state-dependent rates lead to non-exp PDF-s even with BG-entropy

@ NBD coherent state from vacuum: unitary or noisy evolution?
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Definition and Properties of Entropic Divergence

Macro: several initial — same looking final
Micro: more arrangements for final
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Definition and Properties of Entropic Divergence

Entropic Divergence

...sometimes called “distance”

Entropic divergence:
© »[P, Q] > 0 for a pair of distributions P, and Q.
@ 1[P,Q] =0 < Vn: P, = Q, (then and only then)
© Lp[P. Q] <0: the stationary distribution Q, is an attractor

Csiszar’s f-divergence made non-negative:

o[P, Q] = ZQM(%) > f(Z Ong:> = f(1), (1)

for f” > 0 due to the Jensen inequality.

For properties 1 and 2 one sets: f(1) = 0.
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Definition and Properties of Entropic Divergence

Entropic "distance” evolution

P-Linear Discrete Markovian, f-divergence (Csiszar)

Consider p[P, Q] = 3 Qx f(g—) and  Po = (WamPm — WanPh), dto Qn.

Using &, = Pn/Q, we obtain

po= D F(&) P+ (f(&n) — & f'(€0)) Qn

D WomQn [6m 1 (€n) + f(6n) — &n f'(60)]

= Z Wann W-F f(fn) —Mm o (2)
An index exchange in the substracted double sum leads to
=2 [f(&n) = f(€m) + F'(&n)(Em — &)] Wom Q. (3)
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Definition and Properties of Entropic Divergence

Entropic "distance” evolution

Taylor series remainder theorem in Lagrange form

Recall the Taylor expansion of the kernel function (&),

f(m) = (&) + F(E)En—&0) + 21 Co)(En—En)’, (4
with Cmn € [Em, &n)-

This with eq.(3) delivers

p = _% Z f//(Cmn) (Em — gn)z Wom Q. (5)

With positive transition rates, w,» > 0 the approach of any two distributions
measured in the above defined entropic divergence,

p < 0 is hence proven for all f” > 0.
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Definition and Properties of Entropic Divergence

Without detailed balance

Example: Kullback—Leibler divergence

Traditional choice: f(¢) = —In¢, = —1/¢ and f’(€) =1/£2 > 0.

The integrated entropic divergence formula (no symmetrization) in this case
is given as

Kullback-Leibler divergence ®

p[P,Ql = > Qyln %4 (6)

n

For sz) = PLUPLZ) also 0212) = QS)Q("Z) therefore we have .g(n12) = gﬁ,‘)éf). Aiming at

(£(12) = £(£M) + £(£@), the solution is f(¢) = a In &. For f// > 0 it mustbe o < 0,50 0.B.d.A. o = —1.
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Definition and Properties of Entropic Divergence

Entropic divergence as entropy difference

Example: logarithm

Entropic divergence from the uniform distribution U, =1/ W,n=1,2,... W:
Kullback-Leibler divergence: uniform to Q @)
w
plU,Ql = > QuIn(WQn) = InW + > Quin Qs = SsalU] — SeclQ) (7)

n=1 n

with Sgg being the Boltzmann-Gibbs—Planck—Shannon entropy formula.

From the Jensen inequality it follows p[U, Q] > 0, so Spg[U] > Ssa[Q).
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Definition and Properties of Entropic Divergence

Entropic evolution

More general dynamics: P-nonlinear Markovian

Dynamical evolution equation with nonlinear a(P) > 0:

P = > [Wam &(Pm) — Wimn a(Pn)] - (8)

Stationarity ("total balance”) condition on Q:

0= Z [Wom a(Qm) — Wmn a(Qn)] . 9)

Entropic divergence formula to the stationary Q:

plP, Q] = > o(Pn, Qn) (10)

n

the dependence on @, can be fixed from p[Q, Q] = 0.
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Definition and Properties of Entropic Divergence

With total balance only

Change of entropic divergence to stationary

§ = 25 Wan a(Qn)én — Wi a(Qr)ér] (1)
with £, := a(Pn)/a(Q).

We put &m = &n + (Em — &n) in the first summand:

p= Z Sp- 6> [Wan a(Qn) = Al + Z - (6 — &) Wama(Qn)

(12)
In order to use the remainder theorem one has to identify ®
80’ 7 a(P")

then p < Ofor '/ > 0and P # Q.
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Definition and Properties of Entropic Divergence

Without detailed balance

Example: g—Kullback-Leibler divergence

In case of f(¢€) = —In¢&, we have f'(¢) = —1/¢ and f/(¢) = 1/¢2 > 0.
Now having a fractal nonlinear stohastic dynamics, a(P) = P*.

The integrated entropic divergence formula (no symmetrization):

Tsallis divergence, ©®
o _ (R _ @ _ a,
55 = ! (Qﬁ =~ p[P,Q] = XH:Q"I"*P"' (14)
with N
1 x
Ina(X) = = (15)
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Definition and Properties of Entropic Divergence

Without detailed balance

Example: g—Kullback-Leibler divergence

In case of f(x) = —In,(x), we have f'(x) = —x 7, f/(x) =vx ' > 0.
Also having a fractal nonlinear stohastic dynamics, a(P) = P*

The integrated entropic divergence formula (no symmetrization) becomes

Tsallis divergence, g = \v

Qn P, \'"1
p[P,Q] = 21 [ (E) } Zinann. (16)
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Definition and Properties of Entropic Divergence

Special entropic divergence as entropy differeric
Example: g-logarithm

Entropic divergence from the uniform distribution U, =1/ W,n=1,2,... W:

e
QL= =

n=1

[t - wa@)*'] = we (sru) - sri@)). (17)
with St being the Tsallis entropy formula:

Tsallis entropy, g = \v ©®

srla] = ﬁz(oz—on) = —3 Qulng(Qn).  (18)

From the Jensen inequality it follows p[U, Q] > 0, so St[U] > S7[Q)]. The
factor W9~ signifies non-extensivity.
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Hadronization models

Stochastic jumps between states

Some subclasses

ty f t @ neighbour jumps in state
chain in both directions
4y } } (diffusion)
!

@ neighbour jumps in growth,
resets to ground state
(popularity)

tHy

—>
—-

tvy o b
@ neighbour jumps in growth,
several big resets
Left: scheme for processes with local changes (earthquakes)

(e.g- diffusion). Mid: scheme for locally one-way
processes with resets to the ground state (e.g.
popularity). Right: scheme for general processes
with long jumps (e.g. stress in earthquakes)
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Hadronization models

Master Equation on expanding Background

example: popularity (WoS citations, Facebook, etc.)

Dynamics of numbers

N(t) = Z N"(t) number dynamics probability dynamics
N = ~Nand @ \GN ﬁ<y>
) /z \&x/”ﬂN\n / g ok,

Nn = pn—1Nn_1 — pnNn (19) X% @

Dynamics of Pn = Np/N

Wnm = ptmdn—1,m + Ymdn,0
wph,

Po = (v) — (70 + ko) Po and ©

Pn= ptn_1Pn_1— (tn + vn) Pn
(20)
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Hadronization models

Short step-up + long hops to zero:

stationary distribution

Stationary limit: P,(t) — Qp, from Qn = 0 one obtains

Qo = (7)q /(70 + 1o) and stationary ®

_Hn+’7n n

Q N
Q= g, ,=.. =82 (1+7’> . (21)
Hn o 1
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Hadronization models

Constant rates

— exponential distribution

Assume p; = o, attachment rate independent of number of
links.

Q= Q] i = Q (1+7/0)". (22)
F T

Geometrical sum for normalization. We obtain

Boltzmann—Gibbs exponential ®

1
Q= —n-In(1+'y/0'). 23
n 1+0/~v ¢ (23)
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Hadronization models

Linear preference, constant loss rate
— Waring distribution

Linear preference in attachment: p; = o(j + b) (b > 0).

n

j—1+b (b)n
Q Q —F = Q . 24
e Y RN R A OF &
withc = b+ 1+ /0. Norm:
Y>hQn=Q(c—1)/(c—1-b)=1.
Pochhammer ratio (Waring) ®
c—1—b (b)n
= 2
Qo c—1 (¢)n (2)
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Hadronization models

Matthias principle: tail of Waring

— power-law!

The above result in the n — oo limit:

Since F( b)
7 c—b (N +
nl'—>r2<> r(n+c) ’ (26)
we obtain
Pochhammer in n — oo limit: power-law! ©
Y reey __
Q, — —~ L g1/, 27
" 7 44 bo I(b) (27)
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Hadronization models

Preference dynamics in the large n limit!

continuous variable: x = n- Ax

@ P,(t) = Ax - P(n-Ax,t) ensures ioj Pn(t) = [ P(x, t)dx.
n=0 0

@ jpn= A -pu(n-Ax) and v, =~(n-Ax) leadto

Continuum Master: ®

DRt = — 0 (u(x) P(x,1) —1(X)P(x,1).  (28)

with the stationary distribution

o= (29)
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Hadronization models

Particular continuous stationary distributions

with constant v(x) = ~.

For constant rate u(x) = o exponential:

For linear preference p(x) = o(x + b)  Tsallis—Pareto:

awx) = - (1+ ’—;)_1_7/0. (31)

For exponential dispreference u(x) = ce=® Gompertz

Q(x) = gea”%“—e“). (32)
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Hadronization models

CERN

an overview from the air
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Hadronization models

CERN

a piece of the Large Hadron Collider
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Hadronization models

Hadronization

Universe vs Quark-Gluon Plasma
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Definition and Properties of Entropic Divergence
Hadronization models
Generalized Coherent States

Hadronization
Abstract Picture of Physics
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Hadronization models

Hadronization
ALICE detector tracks
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Hadronization models

NBD in hadron number
PHENIX

Au + Au collisons at v/syy = 62 (left) and 200 GeV (right). Total
charged multiplicities.
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Hadronization models

NBD in hadron number

k parameter fit
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Fig. 5. Positively charged particle multiplicity fluctuations in
terms of the k parameter from a negative binomial distribution
fit to the data as a function of centrality for Vs, = 62 and
200 GeV Au+Au and Cu+Cu collisions.

Figure: J.T.Mitchell for PHENIX, arxiv:nucl-ex/0511033 Fig.10
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Hadronization models

NBD in hadron number

our fit on publicly available data

Ig (dn/n de)

# 50 - 55%
® 25-30%
o 0-5%

o
0.5 1.0 1.5 2.0 25 3.0
n/<n>

Figure: T.S.Biré, Z.Néda, Physica A 2018
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Hadronization models

Hadronization in the Growth+Reset model
From QGP to n hadrons: NBD PHENIX, PRC 78 (2008) 044902

Au + Au collisons at /sy = 62 (left) and 200 GeV (right). Total
charged multiplicities.

T

Both rates linear! ~, = o(n— kf), pn=of(n+k);
On _ (n+ll(7—1)fn(1 4+ f)—n—k'

Tamas S. Bir6 Entropy-+Hadronization



Hadronization models

Hadronization in the diffusion model

N particles in K cells: Pdlya distribution

Fermions: max 1 ptl in a cell — Bernoulli distribution

Qn(k; N,K) =

() (=) — (k

n k—n
®) N=fKK—oo n)f“_f) 5

Bosons: arbitrary number inacell — NBD

(k+n) (K—k+N—n) k+
Qn(kiN.K) = ~LZel ke () (40T (34)

K+N+1
v
These are stationary to the quadratic rates:

Wpp—y =on(K — N — K+ n), Wy np1 = (N —n)(k—n)

Wpn—t =0n(K—Kk+N—n), Wy nr1 =o(N—n)(k+n+1).
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Hadronization models

One particle energy distribution
... caused by NBD

NBD defining identity:

i(”j;k)x" = (1—x) (35)

n=0
Normalized distribution: P, = (1 — x)**'("tk)x".

Phase space in a jet: Q(E) ~ E", canonical factor:
Qn(E — w)/Qns1(E) = (1 —w/E)".

Average one ptl energy distribution:

s n ]k
S(1-2) P = [1+k<1>1 E} 1 (36)
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Hadronization models

Hadronization in the Phase Space
From NBD to Tsallis—Pareto

Microcanonical phase space = energy shell = derivative of N-ball volume in L, norm.

() = ZVP(RE)). (@7)

with V§(R) = [2A - r(1 +1/p)]N/r(1 +N/p).

1-dim relativistic jets: N=n,p =1, R(E) = E.

2-dim non-relativistic gas: N = 2n, p = 2, R(E) = v2mE.
ratio r = Q1(e)Qn_1(E — €)/Qn(E) is the same

Mgy — @ _ h-1 €\"-2
(E) = i) (vamE) = “Z (1 _E) . (38)

Compose with P,_o NBD distribution:

oo —k—1
S ANEPrs = £ (1 w2 é) {1 w0 e/E)} . @9
n=2
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Hadronization models

NBD induced pr distributions

corresponding Boltzmann, power-law and Tsallis fits
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Figure: Gabor Bir6 MSc thesis 2016.
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Generalized Coherent States

Coherent Quantum States

General properties in terms of Fock states

Definition
12) = > Vpa(1)e™ |n), with z = Vte®. (40)
n=0

Probability of having n quanta (: = |z?)

(zIm[* = pa(t) > O. (41)
Number of quanta statistics
2 =1 = o) =1 2)
n=0
Superstatistics
/? 2zl =1 = /dtpn(t) _ 1. (43)
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Generalized Coherent States

General properties

in terms of operations

How to make one from another, |z1) — |22) ?
Generally (z1|z2) = re'¥, with r < 1. Since both states are normed, there
exists a unitary transformation between them: U = "

Here H is the wanted Hamiltonian.

Our construction is based on an orthonormal system of two states, |a) and
|8), the states |z;) (i=1,2) are linear combinations of these

|zi) = Aila) + B;|8) (44)

We have |A/> + |Bi|> = 1 and Aj Ay + B; B, = re'™.
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Generalized Coherent States

General properties
Unitary operator in SU(2) form

Then we build an su(2) algebra of operators based on |8) = b' |a):

1 ) (@ + |B) (B] = bb' + b'b,

Vi = ilB){al + ila) (8] = i(b+b'),
Vo = )8l — IB)(a] = b—b,
Vs = ila)(al —i|B)(B] = i(bbT —bTb). (45)

These operators satisfy:ﬂ2 =1,1V,= Vi1 =V, \/,T =V, ViVbo = — V3. Also
b? = (b')? = 0, so b acts like a fermion annihilator.

Therefore in the o — 3 space the Vj-s can be represented by i times the
Pauli-matrices: V; = io;
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Generalized Coherent States

Construction of unitary trf

su(2) "angular” formula

The unitary operation is given as

Uze,z1) = ¥ = pol + BV. (46)
Its action on the orthogonal basis:
U(ze,z1)la) = (po+ips)|a) + (ipr — p2)(B),
U(ze,z1)|B) = (ipr + p2)ler) + (Po—ips) |B) . (47)

This translates to the following equations for the coeff-s:

A = (po+ips)Ar + (ip1 + p2)Bi,
B = (ip1—p2)Ar + (po—ip3)Bi. (48)
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Generalized Coherent States

Unitary shift operator

solution for given (z1|z2)

From reserving normalization we have: pg + p? + p5 + p? = 1.

From the overlap we have

AiPo+ BBy = po (1A11° +1B11%) + ips (14117 — 1B11?) + iz (A By + B A1) + pr (A7 By — B Ar)
49

It simplifies to -

Po + ips <|A1|2 - |B1|2) 1 ipi 2Re(AIBr) + ip223m(AIB:) = re. (50)

We seek for a representation with ps = 0. Then py = cosw, p1 = sinwsin ¢,

P2 = sinw cos .
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Generalized Coherent States

Construction of unitary trf

results

We obtain py = rcost, ps =0, py = rsiny and p. = 1 — r2.

Our simplified expression, reconstructing the |a) and |3) states from the
original ones delivers

o) = %(|z1>+\zu>)
8) = \i@uzo—\zm) (51)
with ’
|zu>:m(\22>_rew 21)) (52)
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Generalized Coherent States

Glauber coherent states

El classico...

Quanta are Poisson distributed

po(t) = e (83)
Overlap of two such states
(zi|z) = e dlalilalisiz, (@l2)f = 27=F (54)
Shift operator
|2) = &' =*"|0) (55)
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Generalized Coherent States

Negativ Binomial States

squeezed Glauber

Let ps(t) be an NBD in n and Euler-Beta in t:
n+k\ (t\" AN
pn(t) = ( n > (E) (1 F R) : (56)
Origin of the name:

—k—1\ (k- 1)(—k-2)...
n T on(-k—-1-n)...

(—1)"(k+1)(k+2)...(k+n) = (=1)" (n+k)(57)

n! n

Tamas S. Bir6 Entropy-+Hadronization



Generalized Coherent States

Negative Binomial States
NBD properties

Generating function of NBD:

GU) = 3Pl = |1+ (1= 05

n=0

Mean number of quanta:

(m) = (k+1)
Non-Poissonity:

ﬁ =14+ <n>

(ny k+1

oo t:|k1
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Generalized Coherent States

Negative Binomial States

action of operators

Action of annihilator (with f = t/k fixed, zx = V/kfe'®):
2|z k) = Zist |Zketi K+ 1) (61)

Alternative forms with f = sinh? ¢, zx = vk sinh ¢ e’:

k oo
a k+1 ieyn
|zk; k) = —= cosh™™" ¢ Z(tanh ¢e™)" In+ k) (62)
Vk! —
Overlap
. —k—1
(z1; K|zo: K) = [cosh (1 cosh (o — sinh (1 sinh & 61(62—61)] (63)

<Zk|0> _ (1 + ‘Zk|2/k)*(k+1)/2
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Generalized Coherent States

Vacuum — NBD transition

overlap, unitary trf, (simple?) Hamiltonian

Overlap (20) = (1 + |z[2/k) /2

Probability
‘Zk|2 (k+1)
(ko = (1+ 50 (64
Ideal 1D gas of extreme relativistic particles (jet): (n) = E/T.
» E —(k+1)
(@0 0E = (1+ T ) (65)

For k — oo it is an exponential Boltzmann factor, exp(—E/T).

For finite k it is a Tsallis—Pareto energy distribution, g =1+ 1/(k + 1).
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Generalized Coherent States

Vacuum — NBD

Simple Hamiltonian which transforms = ?

Alike shift operator for the Poisson case: e ~2, can it be?
Try [A, A] = 1 forms, they are easy to exponentialize.

Use A = af*(n) = f*(" + 1)a; then AT = f(A)a" = a'f(h + 1). Now we have

[A ATl = F(h+1) — F(D) (66)

with F(n) = n|f(n)|2. It is constant for linear F(n) = n+ k
Result:

A=ayf14 X (67)

.. bute?A"=Z"A |0} is not an NBD!
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Generalized Coherent States

Vacuum — NBD: |z4; k) = D|0)

Statistical operator in shift?

We use e*t8 = e=*/2¢”¢? for [A, B] = ) constant.

Consider A = azf(R) at and B = —Bz*a /(7). Then [A, B] = |z|2a8 = A
holds.

We seek for D = e®/2+A+B — e(o_A)/zeAeB, noting that ef |0) = |0).
Then
—aBlz?))2 = 02" (L D
Do) = el®=7e/2 N L (f(R)al)" o). (68)
n=0

It is easy to see that [f(R)a’} |0) = /j1 f(1)f(2)...f(j) |j)
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Generalized Coherent States

Vacuum — NBD

Form of shift operator D

We want the result to be an NBD state:

(o-app/z gV e™
e ZTme)...f(n)m =

n=0

SN e e

This cooks down to:

k+1
2, t o—apt _ (_K
=ty oo () (70

and
(n+ k)!

(1)...fA(n) = =

= (k+n)...(k+1) (71)
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Generalized Coherent States

Vacuum — NBD

Our final "Hamiltonian" for In D is not i*Hermitian!

InD = %(t—(k+1)|n(1 +t/K)) + \/Ee"@,/’%r’;af — Vi gy ) KA

k+h
_ (72)
Viewing the evolution from |0) to NBD one assumes D = ¢'™". Here
ReH o« Z af, + zf,a'
SmH o« z'af. — zf.a' —% (73)
with
k+n \/ k+t
= = 74
e \/k+t “Vksa (74)

Tamas S. Bird
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Definition and Properties of Entrc

Generalized Coherent States

Summary

@ f-divergence shrinks, entropy is related to a distance to
uniform PDF

@ Non-exponential (a.o. Tsallis) distributions can be
stationary (even with BG-entropy)

@ Growth+Reset model can easily produce NBD distribution
@ Unitary evolution from vacuum to NBD is not easy

@ Simple models for making NBD distributed quanta seem to
be noisy !
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