

Hungarian activities in CMS hardware development and detector performance studies

> Viktor Veszprémi Wigner Research Centre for Physics

RECFA visit to Hungary, October 4-5, 2013

Detectors at the LHC

The Hungarian CMS group

- The Hungarian CMS group is composed of 3 institutes
- Overall 25-30 Hungarian participant. With right to access data:
 - Wigner Research Centre for Physics, Budapest: 12 persons (8 authors)
 - Institute of Nuclear Research, Debrecen: 5 persons (5 authors)
 - Institute of Experimental Physics at University of Debrecen: 5 persons (4 authors)
- Participation in the following areas:
 - Run coordination
 - □ Heavy Ion runs
 - Offline software maintenance
 - Computing infrastructure (GRID)
 - Physics analyses
 - Detector development, maintenance, and upgrade

Cross-section of CMS

Cross-section of CMS

A slice of the CMS detector: the Pixel detector

The pixel detector

Barrel:

- 3 tracking layers
- □ R=4.3 cm, 7.2 cm, 11 cm
- Endcap:
 - 2 disks on each side
 - □ Z=34.5 cm and 46.5 cm

- N+-in-n sensor, 66 M pixels
- Pixel size: 100 μm x 150 μm x 285 μm
- Data sparsification of 52x80 pixels by Read Out Chip
- 15840 ROCs in 1312 read-out links

CMS: Pixel Calibration and Simulation

- Online operation, DAQ software development
- Optimizing the alignment of the pixel exposition time to the LHC collisions

• Pixel hit efficiency vs collision rate. Adjusting simulation to reproduce the effect

Radiation causes effective doping of the pixels to change. Monitoring bias voltage required for fully efficient running

CMS: Pixel Detector Upgrade

• Improvements in the upgraded pixel detector: measurement in one more layer, reduced material budget

Current 3 barrel laver

- Support structure and cooling: Zurich
- Power distribution: Aachen
- Control electronics: Wigner RCP
- Optical read-out and signal distribution: Wigner RCP

Supply tube at the two ends of the sensor barrel: controls, programs, and reads out the detector

- Control electronics with fiber optic communication devices
- Connector board for pixel modules

Sector D

A slice of the CMS detector: the Pixel detector

The Strip tracker detector

Relative humidity measurement in the CMS Tracker

- Desired coolant temperature of -25 Co
- Requires low dew point inside tracker volume
- Need instrumentation for precise monitoring

Calibration in two independent climate chambers

- Overall 80 sensors in CMS
- 16 FOS in the pixels

- Humidity and temperature measurement
 - □ Wide range of temperature
 - Small contribution to material budget
 - Insensitivity to strong magnetic field
 - Large radiation resistivity
- Fiber Bragg Grating sensors: the wavelength reflected in the core of the fiber optic cable gets shifted by mechanical tension
- The tension is created by the poliimid coating induced by a change in humidity

Alignment of the Tracker layers

- Individual module movements and bows are tracked
- Calibration parameters are determined in multi-dimensional fits and fed back to reconstruction
 - Our group significantly contributes in the Pixel alignment

A slice of the CMS detector: the Pixel detector

Movements of the Muon chambers

p_t = 3.5, 4.0, 4.5, 6.0 GeV

• The curvature of the muon trajectories strongly depends on the transverse momentum, important to know the positions of the chambers in their reconstruction

• The cylindrical shape of the muon system can get distorted under its own weight, during opening and closing its segments, and in cycling the magnetic field

The Muon Alignment system

250 chambers, 9000 LED, 600 sensors Parallel processing in 36 board computers Precision of 0.2-0.4 mm

Flagship project of Debrecen with contributions from Budapest Links of diagonal measurements

Carbon-fiber structure holding the CCD cameras

Longitudinal measurement of the LEDs mounted on the muon chambers he rings of the

Computing Infrastructure: CMS Centre and Tier-2 Site

CMS Centre

- Data Quality Monitoring shifts for the CMS Tracker Collaboration (60 days)
- Adjustment of Pixel calibration parameters within the 48 hour reconstruction delay window

Grid Tier-2 Site:

- Hardware statistics:
 - CPU: ~ 500 cores
 - □ Storage: ~300 TB
- Infrastructure developments (this year):
 - Renewal of the grid server room
 - Cooling systems, safety systems etc.
 - □ New worker nodes, one new UI machine

Summary

- Hungarian participants constitute ~1 % of CMS
- Relatively wide range of activities from online operations, detector development and maintenance, to offline software maintenance and analysis
- Major efforts in hardware
 - Pixel operation
 - Pixel detector performance studies
 - Pixel upgrade
 - Tracker alignment and data quality check
 - Construction of the muon chambers
 - Muon alignment hardware and software
 - Computing infrastructure