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Abstract

Quantum gravity has not yet obtained a usable theory. We apply the
semiclassical theory instead, where the space-time remains classical
(i.e.: unquantized). However, the hybrid quantum-classical coupling
is acausal, violates both the linearity of quantum theory and the Born
rule as well. Such anomalies can go away if we modify the standard
mean-field coupling, building on the mechanism of quantum
measurement and feed-back well-known in, e.g., quantum optics.
The newtonian limit can fully be worked out, it leads to the
gravity-related spontaneous wave function collapse theory of Penrose
and the speaker.
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Fragments from history

Bronstein (1935): A sharp space-time structure is unob-
servable (because of Schwartzschild radii of test bodies).
Quantization of gravity can not copy quantization of elec-
tromagnetism. We may be enforced to reject our ordinary
concept of space-time.

“

1906-1938

Janossy (1952): Quantum mechanics should be more clas-
sical. ~Expansion of the wave packet might be limited by B
U(x) = a" ()= (x = ()20 (x) + 39(Ax)*e(x)

if we accept superluminality caused by the nonlinear term.

Karolyhazy (1966): The ultimate unsharpness of space-time
structure limits coherent expansion of massive objects’ po-
sition (while individual particles can expand coherently with
no practical limitations).

1929-2012
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Semiclassical Gravity 1962-63: sharp metric

Sharp classical space-time metric (Mgller, Rosenfeld 1962-63):

87 G A
Gy = 7<\U|Tab|\ll)

Schrédinger equation on background metric g:
. | A
W) = — Al )

That's our powerful effective hybrid dynamics for (gas, |W)), but
e with fundamental anomalies (superluminality, no Born rule, ...)
o that are unrelated to relativity and even gravitation
@ just related to quantum-classical coupling
@ that makes Schrodinger eq. nonlinear

No deterministic hybrid dynamics is correct fundamentally!
Way out: metric cannot be sharp, must have fluctuations dg_p.
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Sharp metric Newtonian limit

Coo = 81Ge (V| Too[¥) = AP = 4xG(V[|W)
) = —(i/WAEINVY = (8 = —(i/B)(Fo + JoodV) W) =
= Schrédinger-Newton Equation with self—attract|on.

W) = —(H G//Q ;”_Q >dxdy>\w>

Single “pointlike” body c.o.m. motlon

. ih 2d
$(x) = 5 V2(x) + thz W

U(x)

Solitonic solutions: Ax ~ h?/GM?3. self-attraction

Irrelevant for atomic M, grow relevant for nano-M:
M~ 10"%g, Ax ~10~%cm
That's quantumgravity in the lab [D. 1984].
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Testing self-attraction

PHYSICAL REVIEW D 93, 096003 (2016)
Optomechanical test of the Schriodinger-Newton equation

André GroBardt,l‘z‘* James Bateman,s"“f Hendrik Ulbricht,4’i and Angelo Bassi'**
1Deparrmem of Physics, University of Trieste, 34151 Miramare-Trieste, Italy
*Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
3De’partment of Physics, College of Science, Swansea University, Swansea SA2 8PP, United Kingdom

“School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
(Received 6 October 2015; published 4 May 2016)

The Schrodinger-Newton equation has been proposed as an experimentally testable alternative to
quantum gravity, accessible at low energies. It contains self-gravitational terms, which slightly modify the
quantum dynamics. Here we show that it distorts the spectrum of a harmonic system. Based on this effect,
we propose an optomechanical experiment with a trapped microdisc to test the Schrodinger-Newton
equation, and we show that it can be realized with existing technology.

Schrodinger-Newton Equation for 1D motion of a Massive oscillator:

D) = it () = o (9 + W x — (0)) v(x)

w2 = const. x G x nuclear density in M
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Quantum control to generate potential (tutorial)

Sequential measurements of X plus feedback:

measurement unitary measurement  unitary
of X evolution of X evolution
>~ M Uy~ >~ M| Uyl > - - -
: A : A
: feedback : feedback
outcome X | ====-- > =

outcome x 9 -TmneE

At oo repetition frequency: time-continuous monitoring-+feedback.

xe = (W] X|We) + 0x; Edx:0xs = 7 1 (t — s)
~—~ —_— =~ —— ~—
signal mean noise correlation ~=precision

To generate a potential, take Hg(t) = Rx:X = R((W,|X|W,)+0x,)%.
S I A - R
W) = (Hot 3R W) =50 +40 "R/ T (F= (%)) W)+ . x| V)

fb—generated to be minimized localisation stochastic

TP W
p = h[H0+2RX,)0] 2hR[X7[XJIO]]
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Quantum control to generate potential (summary)

Assume X is being monitored, yielding signal x; = (V,|X|W,) + 0x;.
Apply feedback via the hybrid Hamiltonian

B (t) = Rx% = R(R)& v Rox:%
~——— ~——
sharp semiclassical coupling ~ (white)noise part of coupling

Sharp+noisy terms together cancel nonlinearity (and related
anomalies) from the quantum dynamics:

N TR
pP= h[H0+2RX,p] zﬁR[X,[X,p]]

New potential has been generated ‘semiclassically’ and consistently
with quantum mechanics, but at the price of decoherence.
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Decoherent Semiclassical Gravity: unsharp metric

o Assume T,, is spontaneously measured (monitored)
@ Let T,, be the measured value (called signal in control theory)
@ Replace Mgller-Rosenfeld 1962-63 by

87rGT :87TG A

ch ab ot (<Tab> + 5Tab)

Gab -

i.e.: source Einstein eq. by the noisy signal (meanfield+noise)
@ For backaction of monitoring, add terms to Schrédinger eq.:

d i A
ENI) = —éH[gH\U) + nonlinear + stoch. terms

@ Tune precision of monitoring by Principle of Least Decoherence

D 1990, Kafri, Taylor & Milburn 2014, Tilloy & D 2016-17
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Unsharp metric Newtonian limit

@ Assume ( is spontaneously measured (monitored)
@ Let o, be the measured value (called signal in control theory)

@ Source classical Newtonian gravity by the signal:

)= -G

x—yl

Introduce Hg, =[0®dV to induce Newton interaction

For backaction of monitoring, add terms to Schrodinger eq.:

d A
—t]\Il) = —éH0|\U> + nonlinear + stoch. terms

@ Tune precision of monitoring by Principle of Least Decoherence

Such theory of unsharp semiclassical gravity coincides with ...
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. coincides with DP wavefunction collapse theory

Unique ultimate unsharpness of Newton potential ¢ (metric):
hG
o(t —s)

2/x —y|
By averaging over the stochastic ® (metric), master eq. (D. 1986):

dﬁ_i Iy 5| S 1D a0 o).
dt 2 //| —y‘ (¥),p 2% /‘x_y’[g(x)7[Q(Y)7p]]

Newton pairpotential DP decoherence

Eéd,(r)ids(y)=

Double merit:
@ Semiclassical theory of gravity, a hybrid dynamics of (®, |W))
free of anomalies (no superluminality, valid Born rule).
@ Theory of G-related spontaneous collapse (Schrodinger's Cats go
collapsed).
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Testing DP: LISA Pathfinder

PHYSICAL REVIEW D 95, 084054 (2017)

LISA pathfinder appreciably constrains collapse models

Bassam Helou,l B.J.J. Slagmolen,2 David E. McClelland,2 and Yanbei Chen'

YTheoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125, USA
Australian National University, Canberra ACT 0200, Australia
(Received 20 July 2016; revised manuscript received 12 August 2016; published 28 April 2017)

Spontaneous collapse models are phenomological theories formulated to address major difficulties in
macroscopic quantum mechanics. We'place significant bounds on the parameters of theleading collapse
models, the continuous spontaneous localization (CSL) model, and the Diosi-Penrose (DP) model, by
using LISA Pathfinder’s measurement, at a record accuracy, of the relative acceleration noise between two
free fallmg macroscoplc test masses. In particular, we bound the CSL colldpse rate to be at most

g competitive bound explores a nej
10~ —8+2 g1

proposed by Adler i
the phenomenology of quantum
= 5 in the DP model to prevent diverg
LlSA nucleus. Thus, we rule out the
Pathfinder

test-mass
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MAQRO

e a medium-sized space mission, with a launch in 2025 (ESA)

e harnesses quantum optomechanics, high-M matter-wave interferometry
e testing quantum physics for truly macroscopic objects

e testing so-called collapse models

Kaltenbaek et al. EPJ Quantum Technology (2016) 3:5 b
DOI 10.1140/epjqt/s40507-016-0043-7 O aESE-rjinnggge?Jtcuum\ TeCh nOIOgy

EP].org
ecoo

. ®CrossMark
Macroscopic Quantum Resonators

(MAQRO): 2015 update

Rainer Kaltenbaek' @, Markus Aspelmeyer', Peter F Barker?, Angelo Bassi**, James Bateman®,

Kai Bongs®, Sougato Bose?, Claus Braxmaier’?, Caslav Brukner'?, Bruno Christophe'®, Michael Chwalla'”,
Pierre-Frangois Cohadon'?, Adrian Michael Cruise®, Catalina Curceanu', Kishan Dholakia'*, Lajos Didsi'®,
Klaus Déringshoff'®, Wolfgang Ertmer'’, Jan Gieseler'®, Norman Guirlebeck’, Gerald Hechenblaikner''?,
Antoine Heidmann'?, Sven Herrmann’, Sabine Hossenfelder?, Ulrich Johann'', Nikolai Kiesel',
Myungshik Kim?', Claus Lammerzahl’, Astrid Lambrecht'?, Michael Mazilu'#, Gerard J Milburn?,

Holger Muller?, Lukas Novotny'®, Mauro Paternostro, Achim Peters'®, Igor Pikovski?,

André Pilan Zanoni'?°, Ernst M Rasel"/, Serge Reynaud'?, Charles Jess Riedel”’, Manuel Rodrigues'®,
Loic Rondin'®, Albert Roura’, Wolfgang P Schleich?®%*, Jérg Schmiedmayer*?, Thilo Schuldt®,

Keith C Schwab?', Martin Tajmar*?, Guglielmo M Tino*, Hendrik Ulbricht**, Rupert Ursin? and

Vlatko Vedral***¢
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Mgller-Rosenfeld (sharp) Semiclassical Gravity is quantum-nonlinear,
with related fundamental anomalies and particular effects:

@ superluminality, fall of W's statistical interpretation (anomaly)
@ self-attraction (main effect for tests)

These fundamental anomalies and self-attraction are missing in
(unsharp) Decoherent Semiclassical Gravity. But new anomalies and
effects arise:

@ non-conservation of energy, momenta, etc. (anomaly)
@ decoherence, c.o.m. Brownian motion, ... (effects for tests)
@ submicron cutoff against diverging decoherence (open problem)

@ submicron breakdown of Newton force (effect for tests)
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Decoherent Semiclassical Gravity wouldn't have

been realized without ...

background in standard quantum control—monitoring, feedback, etc.
— and its various formalisms —master egs., lto-stochastic egs., path

integrals, time-ordered exponentials, double-time-superoperators
(Keldysh), etc.
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