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The Stern�Gerlach experiment



• A neutron exiting from a hot nuclear oven would follow a straight
trajectory at constant speed, unless some force act on it.
• However, here we arranged two permanent magnets of opposite
polarity in order to generate a magnetic �eld B which is
perpendicular to the neutron's path.

• How do we expect the magnetic �eld should de�ect the path of
the neutron?

We would expect no de�ection.



But this is not what happens!

Uncharged objects can sometimes have magnetic moments, e.g. if
they are spinning around an axis.
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Classical expectation vs. What really happens
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The SG Analyser



Two SG Analyser with parallel magnetic �elds



Two SG Analyser with parallel magnetic �elds



Two SG Analyser with perpendicular magnetic �elds



Two SG Analyser with perpendicular magnetic �elds



Two SG Analyser with one magnetic �eld along z , and
another with angle θ

Figure: The empirical distribution is roughly {sin2 θ
2
, cos2 θ

2
}.



A mathematical model for the Stern�Gerlach
experiment



• C2 � two-dimensional complex Hilbert space.

• [~u] � the one-dimensional subspace generated by ~u, where we
implicitly assume that ‖~u‖ = 1.

• Proj(C2) � Projective space over C2, i.e.

Proj(C2) = {[~u] : ‖~u‖ = 1}

This is the set of all possible spin states.

• P[~u] � the rank-one projection with range [~u].

• P1(C2) � the set of all rank-one projections, i.e.

P1(C2) = {P[~u] : ‖~u‖ = 1}.

Of course, there is a natural one-one correspondence:

P1(C2) 3 P[~u] ←→ [~u] ∈ Proj(C2).



• If the neutron has spin up (↑) or down (↓) along the z direction,
then its state is

P[(1, 0)] or P[(0, 1)], respectively.

• If the spin is right (→) or left (←) along the x direction, then its
state is

P
[

1√
2

(1, 1)
]

or P
[

1√
2

(1,−1)
]
, respectively.

• If the spin is out (·) or in (×) in the y direction, then its state is

P
[

1√
2

(1, i)
]

or P
[

1√
2

(1,−i)
]
, respectively.

Note that the above pairs are orthogonal pairs, and that the angle
between e.g. the up (↑) and out (·) states is precisely π

4
, since∣∣∣〈(1, 0); 1√

2
(1, i)

〉∣∣∣ = cos π
4
.



• Bloch representation: in general, if the spin points into the
(sin 2θ cos ν, sin 2θ sin ν, cos 2θ) direction, then its state is

P
[(
cos θ, e iν sin θ

)]
.

Notice that this has the following angle-doubling property:

^
(

(sin 2θ1 cos ν1, sin 2θ1 sin ν1, cos 2θ1);

(sin 2θ2 cos ν2, sin 2θ2 sin ν2, cos 2θ2)
)

= 2 · ]
( [(

cos θ1, e
iν1 sin θ1

)]
;
[(
cos θ2, e

iν2 sin θ2
)] )

.



• If the spin is prepared in the state P[~u] and we measure the spin
in the direction P[~v ], then the original state changes, namely, there
are two possible outcomes:

1 either it changes to state P[~v ] with probability |〈~u, ~v〉|2,
2 or it changes to state I − P[~v ] with probability 1− |〈~u, ~v〉|2.

• TrP[~u]P[~v ] � transition probability

An easy calculation gives the following:

TrP[~u]P[~v ] = |〈~u, ~v〉|2 = 1− ‖P[~u]− P[~v ]‖2

for all ‖~u‖ = ‖~v‖ = 1, hence the transition probability is expressed
a function of a very natural metric: the operator norm.



More generally

• H � a complex Hilbert space.

• P1 := P1(H) � the set of all rank-one projections, which
corresponds to the set of all pure quantum states.

• P[~u] � the rank-one projection with range [~u], where ‖~u‖ = 1
is implicitly assumed.

• TrP[~u]P[~v ] � transition probability, i.e. if our quantum system
is in state P[~u], and we make a measurement whether it is in the
state P[~v ], then

1 either it changes to state P[~v ] with probability TrP[~u]P[~v ],

2 or it changes to state P[~w ] with probability 1− TrP[~u]P[~v ],
where ~w is the unit vector that is orthogonal to ~v and lies in
the subspace spanned by ~u, ~v .

Easy calculation gives

TrP[~u]P[~v ] = |〈~u, ~v〉|2 = 1− ‖P[~u]− P[~v ]‖2.



Theorem (E.P. Wigner, 1932(!); 1963�1964)

Let ϕ : P1(H)→ P1(H) be a bijective map such that

Tr
(
P[~u] ·P[~v ]

)
= Tr

(
ϕ(P[~u]) ·ϕ(P[~v ])

)
(‖~u‖ = ‖~v‖ = 1). (W)

Then there is a unitary or antiunitary operator U : H → H such

that

ϕ(P[~u]) = U · P[~u] ·U∗ = P[U~u] (‖~u‖ = 1).

• In fact, (W) is an isometriness condition:

‖P[~u]− P[~v ]‖ = ‖ϕ(P[~u])− ϕ(P[~v ])‖ (‖~u‖ = ‖~v‖ = 1).

• Re-phrasing for vectors: If φ : H → H satis�es

|〈~u, ~v〉| = |〈φ(~u), φ(~v)〉| (~u, ~v ∈ H),

then we have
φ(~u) = τ(~u) ·U~u (~u ∈ H)

where τ : H → C, |τ(~u)| = 1 (~u ∈ H).
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• Let us emphasise that (W) is the only property we assume about
ϕ, so it is not assumed that there is an underlying linear or
antilinear map which generates ϕ, this is a consequence.

• Wigner's theorem is one of the important steps towards obtaining
the general Schrödinger equation:

H~v(t) = i ddt ~v(t).

Very much recommended paper:

B. Simon, Quantum dynamics: from automorphism to Hamiltonian,
Studies in Mathematical Physics, Essays in honor of Valentine

Bargmann, eds. E.H. Lieb, B. Simon, A.S. Wightman, Princeton
Series in Physics, Princeton University Press, Princeton, 327�349,
1976.

freely available from:
http://www.math.caltech.edu/SimonPapers/R12.pdf



The theorem which we will prove

Theorem (E.P. Wigner, non�bijective)

Let ϕ : P1(H)→ P1(H) be an isometry, i.e.∥∥P[~u]−P[~v ]
∥∥ =

∥∥ϕ(P[~u])−ϕ(P[~v ])
∥∥ (‖~u‖ = ‖~v‖ = 1). (W)

Then there is a linear or antilinear isometry W : H → H such that

ϕ(P[~u]) = W · P[~u] ·W∗ = P[W~u] (‖~u‖ = 1).

In the sequel it will be very important to keep in mind the following:

If ϕ(P[~u]) = P[~a] and ϕ(P[~v ]) = P[~b], then we have

|〈~u, ~v〉| = |〈~a, ~b〉|.
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Metric resolving sets



De�nition

Let (X , d) be a metric space and D,R ⊆ X . We say that R is a
resolving set for D if for any two points x1, x2 ∈ D whenever

d(x1, y) = d(x2, y) (∀ y ∈ R)

is satis�ed, then
x1 = x2.

• Note that R does not have to be a subset of D.

• Throughout this talk we will assume that dimH = ℵ0. Fix an
ONB: {~ej}∞j=1

. For j ∈ N and ~v ∈ H, ‖~v‖ = 1 we set

vj := 〈~v , ~ej〉.



• The set
D := {P[~v ] : vj 6= 0, ∀ j}

is clearly dense in P1(H) with respect to the operator norm.

Lemma

The set

R =
{
P[~ej ]

}∞
j=1

⋃{
P

[
~ej − ~ej+1√

2

]
,P

[
~ej + i~ej+1√

2

]}∞
j=1

resolves D.

• Observe that R ∩ D = ∅.



Proof of Wigner's theorem

in the separable in�nite dimensional case

Based on the following paper:
Gy. P. Gehér, An elementary proof for the non-bijective version of

Wigner's theorem, Phys. Lett. A 378 (2014), 2054�2057.



There is an ONS {~fj}∞j=1
such that

P[~fj ] = ϕ(P[~ej ]) (∀ j).

De�ne
H′ := ∨{~fj}∞j=1.

ranϕ ⊆ P1(H′): If we have ϕ(P[~v ]) = P[~w ], then

|vj | = |〈~w , ~fj〉| (∀ j)

thus, by Parseval's identity ~w ∈ H′ and

ϕ(P1(H)) ⊆ P1(H′).

We modify ϕ so that each P[~ej ] is �xed:
De�ne the following linear isometry:

V : H → H′ ⊆ H, V~ej = ~fj (∀ j).

The map ϕ1(·) := V∗ϕ(·)V obviously satis�es (W). Moreover,

ϕ1(P[~ej ]) = V∗ϕ(P[~ej ])V = V∗P[~fj ]V = P[V∗~fj ] = P[~ej ].



There is an ONS {~fj}∞j=1
such that

P[~fj ] = ϕ(P[~ej ]) (∀ j).

De�ne
H′ := ∨{~fj}∞j=1.

ranϕ ⊆ P1(H′): If we have ϕ(P[~v ]) = P[~w ], then

|vj | = |〈~w , ~fj〉| (∀ j)

thus, by Parseval's identity ~w ∈ H′ and

ϕ(P1(H)) ⊆ P1(H′).

We modify ϕ so that each P[~ej ] is �xed:
De�ne the following linear isometry:

V : H → H′ ⊆ H, V~ej = ~fj (∀ j).

The map ϕ1(·) := V∗ϕ(·)V obviously satis�es (W). Moreover,

ϕ1(P[~ej ]) = V∗ϕ(P[~ej ])V = V∗P[~fj ]V = P[V∗~fj ] = P[~ej ].



Therefore

� ϕ1(P[~ej ]) = P[~ej ] (∀ j ∈ N)

� ϕ1(P[~v ]) = P[~w ] =⇒ |vj | = |wj | (∀ j ∈ N);

� ϕ1(D) ⊆ D;

Also notice that ∃ |δj+1| = |εj+1| = 1 such that

ϕ1

(
P

[
~ej − ~ej+1√

2

])
= P

[
~ej − δj+1~ej+1√

2

]
ϕ1

(
P

[
~ej + i~ej+1)√

2

])
= P

[
~ej + iεj+1~ej+1√

2

]
(∀ j ∈ N).

Applying (W) for the above yields
√
2 = |1 + iδj+1εj+1|, and

consequently,

δj+1 ∈ {−εj+1, εj+1} (∀ j ∈ N).
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We modify ϕ1 so that every element of R stays �xed.

De�ne ϕ2(·) := Uϕ1(·)U∗, where

if ε2 = δ2, then U is the unitary operator with

U~ej = Πj
k=2

δk · ~ej ,

if ε2 = −δ2, then U is the antiunitary operator with

U~ej = Πj
k=2

δk · ~ej .

In addition to the previous properties, φ2 also satis�es

� ϕ2

(
P
[
~ej−~ej+1√

2

])
= P

[
~ej−~ej+1√

2

]
(∀ j ∈ N);

� ϕ2

(
P
[
~e1+i~e2√

2

])
= P

[
~e1+i~e2√

2

]
(j = 1);

� ϕ2

(
P
[
~ej+i~ej+1√

2

])
∈
{
P
[
~ej−i~ej+1√

2

]
,P
[
~ej+i~ej+1√

2

]}
(j > 1).
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ϕ2

∣∣
R

= IdR :

Assume otherwise, then there exists a �rst j > 1 such that

ϕ2

(
P
[
~ej+i~ej+1√

2

])
= P

[
~ej−i~ej+1√

2

]
Claim: Then we have

ϕ2(P[vj−1~ej−1 + t~ej + vj+1~ej+1]) = P[vj−1~ej−1 + t~ej + vj+1~ej+1]

for all t > 0, vj−1 6= 0, vj+1 6= 0, |vj−1|2 + t2 + |vj+1|2 = 1.

Proof: it is a rather easy calculation. �

But this is a contradiction, since if

~x =
−1
2
~ej−1 +

1

2
~ej +

1√
2
~ej+1, ~y =

i

2
~ej−1 +

1

2
~ej +

i√
2
~ej+1,

then

√
2/4 = |i/4 + 1/4− i/2| = |i/4 + 1/4 + i/2| =

√
10/4.
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Therefore indeed ϕ2 is the identity mapping on R , hence on D, and
therefore on P1, and we easily calculate

ϕ(P[~u]) = WP[~u]W∗

where W = VU∗. �

Some remarks:

The �nite dimensional case can be proved in a very similar
way, even with some simpli�cations.

The non-separable case can be proven as a consequence of the
separable case (technical).

A similar, but somewhat simpler proof works for the real case.
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