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As in religion and art for a long while, now in science, there is no fundamental
principle that is not questioned; there is no nonsense that would not be believed

by some people. (Planck 1930)



Kolmogorovian (Classical) Probability

vs.
Quantum Probability



Kolmogorovian (Classical) Probability

Event algebra: A Boolean algebra

Probability: p : A → [0, 1] such that

1. p(1) = 1

2. p(A ∨ B) = p(A) + p(B)− p(A ∧ B)



Quantum Probability

Event algebra: L(H) subspace lattice of a Hilbert space

Probability: p : L(H)→ [0, 1] generated by a density operator W

p(E) = tr(WE)



Pitowsky theorem∗

p =
(

p1, p2, . . . pn, . . . pij, . . .
)

Denote R(n, S) ∼= Rn+|S| the linear space consisting of real vectors of this type. Let
ε ∈ {0, 1}n be an arbitrary n-dimensional vector consisting of 0’s and 1’s. For each ε
we construct the following uε ∈ R(n, S) vector:

uε
i = ε i uε

ij = ε iε j i = 1, 2, . . . n (i, j) ∈ S

The set of convex linear combinations of uε’s is called a classical correlation polytope:

c(n, S) =

{
f ∈ R(n, S)

∣∣∣∣∣f = ∑
ε

λεuε ; λε ≥ 0; ∑
ε

λε = 1

}

Theorem (Pitowsky 1989) The correlation vector p admits a representation in a Kol-
mogorovian probability space if and only if p ∈ c(n, S).

∗Pitowsky, I. (1989): Quantum Probability – Quantum Logic, Lecture Notes in Physics 321, Springer,
Berlin.



“Bell-type” inequalities

The condition p ∈ c(2, {(1, 2)}) is equivalent with the following inequalities:

0 ≤ p12 ≤ p1 ≤ 1
0 ≤ p12 ≤ p2 ≤ 1
p1 + p2− p12 ≤ 1

Similarly, for p ∈ c(4, {(1, 3), (1, 4), (2, 3), (2, 4)}):

0 ≤ pij ≤ pi ≤ 1
0 ≤ pij ≤ pj ≤ 1 i = 1, 2 j = 3, 4
pi + pj − pij ≤ 1

−1 ≤ p13 + p14 + p24− p23− p1− p4 ≤ 0
−1 ≤ p23 + p24 + p14− p13− p2− p4 ≤ 0
−1 ≤ p14 + p13 + p23− p24− p1− p3 ≤ 0
−1 ≤ p24 + p23 + p13− p14− p2− p3 ≤ 0

Clauser–Horne inequalities.



Nonsensical probabilities for non-commuting elements

θ
E

F

Ψ

It can be shown∗ that for any two noncommuting elements E1, E2 ∈ L(H) there
always exists a pure state ψ such that

〈ψ, E1ψ〉︸ ︷︷ ︸
1

+ 〈ψ, E2ψ〉︸ ︷︷ ︸
>0

− 〈ψ, (E1 ∧ E2)ψ〉︸ ︷︷ ︸
0

> 1

It not simply violates the Kolmogorovian axiom 2, but it is a nonsense.

∗Szabó, L. E. (2001): Critical reflections on quantum probability theory, in: John von Neumann and the
Foundations of Quantum Physics, M. Rédei and M. Stoeltzner (eds.), Kluwer Academic
Publishers, Dordrecht.



The Laboratory Record Argument∗

There can not exist things—(quantum) events, properties, elements of reality etc.—
whose relative frequency equals the quantum probability.

Experiment X1 X2 X3 X4 X1 ∧ X3 X1 ∧ X4 X2 ∧ X3 X2 ∧ X4

1 0 0 1 0 0 0 0 0

2 0 1 0 0 0 0 0 0

3 1 0 1 0 1 0 0 0
...

...
...

...
...

...
...

...
...

99998 1 0 0 0 0 0 0 0

99999 0 0 1 0 0 0 0 0

N=100000 0 1 0 1 0 0 0 1

N1 N2 N3 N4 N13 N14 N23 N24

The relative frequencies are

ν1 =
N1

N
, ν1 =

N2

N
, . . . , ν24 =

N24

N
∗Szabó, L. E. (2001): Critical reflections on quantum probability theory, in: John von Neumann and the

Foundations of Quantum Physics, M. Rédei and M. Stoeltzner (eds.), Kluwer Academic
Publishers, Dordrecht.
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}
⇒

ν = (ν1, ν2, . . . ν24) ∈ c(4, {(1, 3), (1, 4), (2, 3), (2, 4)}
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The Laboratory Record Argument

There can not exist things—(quantum) events, properties, elements of reality etc.—
whose relative frequency equals the quantum probability.

Consequently, ν1, ν2, . . . ν24 must satisfy the Clauser–Horne inequalities.
But, consider the typical numbers ascertained in the EPR experiment:

ν1 = ν2 = ν3 = ν4 =
1
2

ν13 = ν14 = ν24 =
3
8

ν23 = 0

p13 + p14 + p24− p23− p1− p4 =
3
8
+

3
8
+

3
8
− 0− 1

2
− 1

2
≮ 0



It is a fact, however, that many probabilistic statements of quantum theory are tested
experimentally by counting frequencies. How is this compatible with the difficulties

outlined in the Laboratory Record Argument?



Kolmogorovian Censorship Hypothesis∗

We never encounter “naked” quantum probabilities in reality.

p(A) = tr(WPA) · p(a)

What we observe is p(A) and p(a). They are real (Kolmogorovian) relative frequen-
cies.

∗Szabó, L. E. (1995): Is quantum mechanics compatible with a deterministic universe? Two interpreta-
tions of quantum probabilities, Foundations of Physics Letters 8, 421.



Kolmogorovian Censorship Hypothesis∗

We never encounter “naked” quantum probabilities in reality.

p(A) = tr(WPA)︸ ︷︷ ︸
p(A|a)

·p(a)

What we observe is p(A) and p(a). They are real (Kolmogorovian) relative frequen-
cies.
Quantum probabilities are nothing but classical conditional probabilities of outcomes
of measurements of quantum observables, where the conditioning events are the
events of choosing to set up a measuring device to measure a certain observable.

∗Szabó, L. E. (1995): Is quantum mechanics compatible with a deterministic universe? Two interpreta-
tions of quantum probabilities, Foundations of Physics Letters 8, 421.



Kolmogorovian Censorship Theorem

1. Let (L(H), W) be a quantum probability space.

2. Let Γ be a countable set of observables, such that

[A, B] 6= 0 if A 6= B for all 0 6= A, B ∈ Γ

3. Let a map p0 : Γ→ [0, 1] be such that ∑A∈Γ p0(A) = 1 and p0(A) > 0 if A 6= 0.

Then there exists a classical probability space (A, p) with the following properties:
For every spectral projection Ai for any observable A ∈ Γ there exist events Acl

i and
acl in A such that

Acl
i < acl (1)

acl ∧ bcl = 0 if A 6= B (2)
p(acl) = p0(A) (3)

p
(

Acl
i |acl

)
= tr (WAi) (4)
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Proofs: Bana and Durt (1997); Szabó (2001); Rédei (2010)


