A CERN LHC TOTEM Kísérletének legújabb FELFEDEZÉSEI

Csörgő Tamás ^{1,2}

¹ Wigner RCP, Budapest, Hungary ² EKE KRC, Gyöngyös, Hungary

Hofstadter eredményei

Új képalkotási módszer: Lévy sorfejtésről dióhéjban

TOTEM/LHC p+p @ 7 és 13 TeV p+p @ 23, 30, 45, 53, 62 GeV

Proton-proton és proton-antiproton rugalmas ütközések

Páratlan felfedezés: Odderon Páros felfedezés: struktúrák a protonban

<u>arxiv:1807.02897</u>

Ma (2018.07.10-én) jelent meg, 71 oldal, 41 ábera

Diffrakció – R. Hofstadter, Nobel-díj (1961)

570

Fig. 5. This figure shows the elastic and inelastic curves corresponding to the scattering of 420-MeV electrons by "C. The *solid circles*, representing experimental points, show the elastic-scattering behavior while the *solid squares* show the inelastic-scattering curve for the 4.43-MeV level in carbon. The *solid line* through the elastic data shows the type of fit that can be calculated by phase-shift theory for the model of carbon shown in Fig. 8.

e+A: atommagokon rugalmasan szóródó elektronok szögeloszlásai

3

Gömb alakú atommagok elektromos töltéseloszlásai

$p+A \rightarrow p+A$ Glauber és Matthiae, NPB21 (1970) 135

2.50 225 2.00 1.75 1.50 125 1.00 0.75 0.50 025 8 9 Radial distance (10⁻¹³cm)

1961 R.HOFSTADTER

Az atommagok nukleon (p+n) eloszlása ~ az atommagok elektromos (p) töltéseloszlása

Diffrakció: mit tanultunk meg?

Gömb alakú atommagok térfogata V ~ A (tömegszám) A "bőrük" vastagsága független A-tól → Az atommagok központi sűrűsége A-tól független R. Hofstadter, fizikai Nobel-díj előadása (1961)

A CERN LHC főbb kísérletei (RRB/LHCC)

TOTEM fizika az LHC-nél

Rugalmas és diffraktív szórás: színtelen kvantum cseréje

TOTEM előzetes adatok, √s = 13 TeV

Large amount of data (trigger rate 50× w.r.t. Run I)

TOTEM preliminary at $\sqrt{s} = 13$ TeV

First results @ Low-X 2013: GV works for $d\sigma/dt dip$

p+p \rightarrow p+p, Glauber model, \sqrt{s} =7000.0 GeV Data points 0 do/dt for protons [mb/GeV² ____01
____1
___01
____ MINOS: successful Fit range = $0.36 \le t \le 2.50 \text{ GeV}^2$ 10 Fitted theory χ^2 / NDF = 100.44/74= 1.36 CL = 2.216 % Extrapolation ERROR MATRIX ACCURATE 10^{-3} $a = 5.47 \pm 0.20 (GeV/c)^{-2}$ 10-4 $\kappa = 153.95 \pm 0.27 \text{ mb}$ 10⁻⁵ $\alpha = -0.31 \pm 0.02$ $b_1 = 0.57 \pm 0.12 (GeV/c)^{-2}$ $b_{a} = 0.22 \pm 0.02 (GeV/c)^{-4}$ 10⁻⁶ data - theory) / erroi -5 -10[⊏]0 0.5 2.5 1.5 2 -t [GeV²]

Glauber-Velasco (GV) (original)

describes d_o/dt data Both at ISR and TOTEM@LHC in the dip region

arxiv:1311.2308

Note: at low-t GV is ~ exponential

> Really? Lower energies?

TOTEM results @ 8 TeV, arxiv:1503.08111: dσ/dt non-exponential at low-t

Table 4: Fit quality measures for fits in Figure 11.

N _b	χ^2/ndf	p-value	significance
1	117.5/28 = 4.20	$6.1 \cdot 10^{-13}$	7.2σ
2	29.3/27 = 1.09	0.35	0.94σ
3	25.5/26 = 0.98	0.49	0.69σ

Non-exponential pp in GV model

Fig. 4: Logarithmic slopes of the $\bar{p} - p$ differential cross-section at 546 GeV calculated according to: the *BSWW* form factor, which is accurate at small momentum transfers (solid wave), the Felst form factor, which accounts only for the data at larger momentum transfers (dashed curve) and the dipole form factor together with the Chou-yang scattering amplitude (dotted curve).

Imaging with shadow profile

$$A(b) = 1 - |e^{-\Omega(b)}|^2$$

Saturation from shadow profiles

at 7 TeV proton becomes

> Blacker, but not Edgier, and Larger

BEL → BnEL effect arxiv:1311.2308

$$A(b) = 1 - |e^{-\Omega(b)}|^2$$

ISR and SppS: R.J. Glauber and J.Velasco Phys. Lett. B147 (1987) 380 b_1, b_2 fixed apparent saturation: center of proton ~ black at LHC, up to r ~ 0.7 fm

see also Lipari and Lusignoli, arXiv:1305.7216

Shadow imaging in p+p at LHC

The **BnEL** effect.

Can it explain TOTEM data, new trends of B at LHC?

MODEL INDEPENDENT LEVY EXPANSION

T. Csörgő, R. Pasechnik, A. Ster, arxiv.org:1807.02897

16

T. Csörgő, T. Novák and A. Ster arXiv:1604.05513 [physics.data-an]

CUMULÁNS SORFEJTÉS: NAGY -t

17

LEVY SORFEJTÉS, ISR ÉS LHC ENERGIÁN

T. Csörgő, R. Pasechnik, A. Ster, arxiv.org:1807.02897

KÉPALKOTÁS ISR ÉS LHC ENERGIÁN

T. Csörgő, R. Pasechnik, A. Ster, arxiv.org:1807.02897

LEVY SORFEJTÉS, ISR ÉS LHC ENERGIÁN

C-PÁRATLAN: (P,P) - (P,ANTIP)

C-PÁRATLAN: (P,P) - (P,ANTIP)

C-PÁRATLAN: (P,P) - (P,ANTIP)

$\phi(t)$ for pp vs p \overline{p} collisions

LEVY ILLESZTÉS: DURVA SZERKEZET

LEVY ILLESZTÉS: FINOM SZERKEZET

Psub(b) for substructure in pp collisions

A protonban két belső szerkezet, növekvő energiával növekszik: de a kisebb energiákon a kisebb, q Az LHC energiákon a nagyobb, d=(q,q)

T. Csörgő, R. Pasechnik, A. Ster, arxiv.org:1807.02897

LEVY ILLESZTÉS: FINOM SZERKEZET

$\mathbf{P} = (\mathbf{q}, \mathbf{d})$

Shadow profile P(b) for pp and $p\overline{p}$ collisions 1.0 Psub(b) for substructure in pp collisions 0.8 рр 23.5 GeV, pp 30.7 GeV, pp эp 0.6 ----- 45 GeV, pp V, p<u>p</u> 0.4 53 GeV, pp 62 geV, pp 0.2 7 TeV, pp 13 TeV, pp b, fm 0.0 b. fm 0.5 1.0 1.5 2.0 2.53.00.00.0 0.5 1.0 1.5 A protonon belül látható egy nagyobb (dikvark) és egy kisebb (kvark) szerkezet is !! 27 T. Csörgő, R. Pasechnik, A. Ster, arxiv.org:1807.02897

ÖSSZEFOGLALÁS

Az LHC energiákon a proton megváltozik

Blacker, but not Edgier, and Larger: BnEL

Minél gyorsabban megy, annál nagyobb a proton

ODDERONT KERESTÜNK ÉS ... ODDERONT TALÁLTUNK

Továbbá még találtunk két új struktúrát

"Felöltözött" kvark és dikvark **P=(q,d)**

Köszönöm a figyelmet!

Kérdések?