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“Covariant Quantum Mechanics” is a geometric approach to standard Quantum Me-
chanics on a curved spacetime equipped with a time fibring and a spacelike riemannian
metric (see, for instance, [1, 2, 3, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 11] and citations therein).

This approach is aimed at implementing the principle of general relativity and the
interpretation of gravity as a spacetime connection, in a spacelike riemannian framework
(instead of a lorentzian framework), in order to stay close to standard Quantum Mechanics
as far as possible.

The classical background of this theory consists of

- an affine space T associated with the “positive space” T, representing absolute time,

- a fibred manifold ¢ : E — T, representing spacetime,

- a “scaled” spacelike riemannian metric g : E — L® (V*E ® V*E), representing the
metric field,

- a “galileian” linear symmetric spacetime connection K* : TE — T*E®TTE , which
fulfills the conditions Vidt = 0, Vig =0, R" Nipk = Rf ukj Tepresenting the gravitational
field,

- a closed “scaled” spacetime 2-form F : E — (L'/?2 @ M'/?) ® A>’T*E , representing
the electromagnetic field.

The coordinate expression of K is of the type
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where ® = O[K,G,0] = ®,,d* ANd" : E — A’T*E is a closed spacetime 2-form, which
depends on K, on GG and on the observer o associated with the chosen spacetime chart.

The classical motions are the sections s : T' — E .

We assume as classical phase space the 1st jet space of motions J;E, which is an
affine bundle over FE associated with the vector bundle T* ® V E. We have the contact
map n: JJECT*QTE.

With reference to a particle of mass m € M, we consider the “rescaled” spacelike
metric G:=7g: E—-T® (V'EQV'E).

With reference to a particle of mass m € M and charge g e T' @ L2 M/2 @ R,
we define the “joined” galileian spacetime connection

K:=K'-14(dt®F+Fad),
which accounts both for the gravitational and electromagnetic fields.

We define a phase connection to be a connection I' : J1E — T*E ® T J, E of the affine
bundle t} : JE — E.

There is a natural bijection between time preserving, linear spacetime connections K
and affine phase connections I'.

Each affine phase connection I' yields in a covariant way, respectively, the
“quadratic” dynamical phase connection, the dynamical phase 2—form, the dynamical
phase 2-vector

vy=4[ =a.:E-T"®ThHE,
Q= Q,G:=Gs(vV[IA0): LE — N°T*J,E,
A= ANG:=Gi(T Av): LE - NV E,

which fulfill the identities

idt=1, i, Q=0, dAQAQAQZO,
=0, L,A=0, [A A]=0.

We have the coordinate expressions
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Thus, the joined spacetime connection K yields, in a covariant way, a cosymplectic
phase 2-form Q : JJE — A?*T*J, E | which encodes all classical structures. On the other
hand, A encodes only a spacelike information.

Accordingly, the hamiltonian approach to Covariant Classical Mechanics develops in
the framework provided by the cosymplectic structure (dt,$2), which replaces the more
usual symplectic structure.

The framework of quantum theory is constituted by the
- the quantum bundle, defined as a 1-dimensional complex bundle 7 : Q — F,
- an n—hermitian quantum metric h, : Q X Q = A’V*E @ C.

E

We consider also the
- “upper” quantum bundle, defined as the pullback bundle 7 : Q" := JExQ — J,E..
E

The enlarged base space Ji E of the upper quantum bundle encodes all possible clas-
sical observers.

The upper quantum bundle Q" is equipped with

- an upper quantum connection, which is defined as a“reducible”, hermitian connection
Yyt Q" - T*JLE @ TQ", whose curvature fulfills the condition R[UT] = —2iQ & 1.

With reference to a quantum basis b, an observer o and an adapted chart, the coor-
dinate expression of an upper quantum connection Y' is locally of the type
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where x'[b] : Q" — T*J1E ® TQ" is the flat hermitian upper quantum connection
induced by the quantum basis b, AT[b] : JJE — T*E is the upper quantum potential,
A[b, o] :=0*A'[b] : E — T*E is the quantum potential, K[o] : J; E — T*E is the classical
kinetic energy, Qlo| : J1E — T*E is the classical kinetic momentum, H[b,o] : JJE —
T*E is the classical hamiltonian, P[b,o] : J1E — T*E is the classical momentum.

We derive, in a covariant way, from the upper quantum connection (which lives on the
upper quantum bundle, hence involves all possible classical observers) all fundamental
objects of quantum dynamics, by following a criterion of “projectability” on spacetime,
in order to get rid of observers. Thus, this method turns out to be a way to implement
the covariance of the quantum theory.

According to this covariant procedure, we exhibit the main quantum objects, such as



- the kinetic quantum momentum Q(¥) =1V —iG'VIU  E - T*® (TE®Q),
-the probability current J(¥) = 1@ ||¥|]> —reh(¥, iGIVI0) : E 5 L3 @ (T*QTE),

- the Schrédinger operator S(¥) := 3 <IIJ VI + g (Q(\If))) E-T"®Q,
- the quantum lagrangian L(V) := —dt A (imh, (¥, 1 VIU)+1 (Geh,)(VIT, VIT)
E — MT'E,
- the quantum Poincaré-Cartan form O[L]:=L + JA VoL : J;Q — A'T*Q, with
coordinate expressions
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Indeed, these objects can be achieved by independent approaches; in particular, we
can prove that S and L are determined by the only requirement of covariance (see [1]).

We can exhibit, in a covariant way, a distinguished family spe(J; E,R) C map(J; E,R)
of phase functions f : JJE — IR called “specwl phase functions” s with coordinate ex-
pression of the type f = fo La xo i+ G xo + f with f°, f¢, f E—-R.

These phase functions admlt in a covarlant way, a tangent lift X[f]: E — TE , with
coordinate expression X|[f] = f0 Oy — [10;

The family of special phase functions turns out to be equipped with a Lie bracket
defined by the equality

[f.f1 = Adf,df) + fOr.f — fO.f
= X"[f].f = X'[f].f +2(X"[f]. XT[f]),

where X1[f] and X'[f] are phase prolongations of X[f] and X|[f], respectively.

We have a natural Lie algebra isomorphism pro(J; E,IR) — her(Q,TQ) between the
Lie algebra of projectable special phase functions and the Lie algebra of hermitian quantum
vector fields provided by the equalities

Ylf] = X[f] ax[o] + (i fo] - ldian[f])H
= X[f] a4o] + (i flo] — § div, X[f]) 1
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For each f € spe(J1E,IR), we obtain, in a covariant way, the “spacelike” quantum
operator

O[f] =i (Y;[f] = SIf]) : sec(E, Q) — sec(E, Q) ,

with coordinate expression

OLf1(¥) = ((f—Aifi—i(fiaer%M\/%”—‘q'))—%fOAo)IP)b.

For instance, we have

O[2](¥) =2 ¢b,

O[P;)(¥) = —i (959 + 3

O[Hol(¥) = — (L Aoy + Ag ) b.O0

The Lie algebra of special phase functions admits a distinguished Lie subalgebra
cnstimspe(J/1 E,IR) C spe(J1E,IR) of conserved functions with constant time compo-
nent.

The infinitesimal symmetries of the classical structure (dt,2) turn out to be the phase
vector fields

X' = X"[f] = X"haf] = X haml /],

where f € cnstimspe(J1E,R).
The infinitesimal symmetries of the quantum structure (dt,h,, 4") turn out to be the
upper quantum vector fields of the type

YL, =Y [f]=49Y(X"f]) +ifI",  with  X"[f] = X" wal[f] = X ham[f],

where f € cnstimspe(J E, IR).
The infinitesimal symmetries of the quantum dynamical structure (dt,h,, L) are the
n-hermitian quantum vector fields Y =Y, [f], where f € cnstimspe(J;1 E,IR).
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