COMPACTIFIED TRIGONOMETRUC RUUJSENAARS-SCHNENDER SYSVEMS

A joint work with Martin Hallnås
Jamás F. Görbe Universitity of Szeged

December 15, 2017
Theoretical Physics Seminar Wigner RCP, Budapest

$$
\mathbf{I}_{\mathbf{I I}}^{\mathbf{I I I}} \mathbf{I V}
$$

$$
\begin{aligned}
& \omega \rightarrow \pi / 2 \alpha \\
& \alpha \rightarrow 0|\alpha \rightarrow \mathrm{i} \alpha| \omega^{\prime} \rightarrow \mathrm{i} \infty \\
& \text { I II III IV } \\
& { }^{c \rightarrow \infty} \\
& H_{\mathrm{rel}}=m c^{2} \sum_{j=1}^{N} \cosh \left(\frac{p_{j}}{m c}\right) \sqrt{\prod_{k \neq j} f\left(x_{j}-x_{k}\right)}
\end{aligned}
$$

Compactified Trigonometric RS Model Classical Case

Obtained from the traditional trigonometric RS model via $\beta \rightarrow \mathrm{i} \beta$. The 2-particle Hamiltonian reads

$$
H\left(x_{1}, x_{2}, p_{1}, p_{2}\right)=\left(\cos \left(\beta p_{1}\right)+\cos \left(\beta p_{2}\right)\right) \sqrt{1-\frac{\sin ^{2}\left(\frac{\alpha \beta g}{2}\right)}{\sin ^{2} \frac{\alpha}{2}\left(x_{1}-x_{2}\right)}}
$$

The center-of-mass phase space is the cylinder $\left(\beta g, \frac{2 \pi}{\alpha}-\beta g\right) \times \mathbb{S}^{1}$ locally.

What is the completed phase space?

Obtained from the traditional trigonometric RS model via $\beta \rightarrow \mathrm{i} \beta$. The 2-particle Hamiltonian reads

$$
H\left(x_{1}, x_{2}, p_{1}, p_{2}\right)=\left(\cos \left(\beta p_{1}\right)+\cos \left(\beta p_{2}\right)\right) \sqrt{1-\frac{\sin ^{2}\left(\frac{\alpha \beta g}{2}\right)}{\sin ^{2} \frac{\alpha}{2}\left(x_{1}-x_{2}\right)}}
$$

The center-of-mass phase space is the cylinder $\left(\beta g, \frac{2 \pi}{\alpha}-\beta g\right) \times \mathbb{S}^{1}$ locally.
What is the completed phase space?

The N-particle Hamiltonian can be written in terms of particle-positions $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right)$ and momenta $\boldsymbol{p}=\left(p_{1}, \ldots, p_{N}\right)$ as

$$
H(\boldsymbol{x}, \boldsymbol{p})=\sum_{j=1}^{N} \cos \left(\beta p_{j}\right) \sqrt{\prod_{k \neq j}\left(1-\frac{\sin ^{2}\left(\frac{\alpha \beta g}{2}\right)}{\sin ^{2} \frac{\alpha}{2}\left(x_{j}-x_{k}\right)}\right)}
$$

with scale (α), deformation (β), and coupling (g) parameters subject to

$$
\alpha>0, \quad \beta>0, \quad 0<g<\frac{2 \pi}{\alpha \beta} .
$$

Integrability: A complete set of independent first integrals in involution

$$
H_{r}(\boldsymbol{x}, \boldsymbol{p})=\sum_{\substack{J \subset\{1, \ldots, N\} \\|J|=r}} \cos \left(\beta \sum_{j \in J} p_{j}\right) \sqrt{\prod_{\substack{j \in J \\ k \notin J}}\left(1-\frac{\sin ^{2}\left(\frac{\alpha \beta g}{2}\right)}{\sin ^{2} \frac{\alpha}{2}\left(x_{j}-x_{k}\right)}\right)} .
$$

The model was introduced by Ruijsenaars ('90), who imposed that $0<g<2 \pi / \alpha \beta N$, henceforth referred to as the standard case, and considered the thick-walled Weyl alcove

$$
\Sigma_{g}=\left\{\boldsymbol{x} \in E \mid x_{j}-x_{j+1}>\beta g(j=1, \ldots, N-1), x_{1}-x_{N}<2 \pi / \alpha-\beta g\right\}
$$

sitting in the center-of-mass hyperplane $E: x_{1}+\cdots+x_{N}=0$, as configuration space. Quantised and solved for $N=2$ by Ruijsenaars ('90), $N>2$ by van Diejen-Vinet ('98).

Fehér and Kluck ('13) showed that the center-of-mass configuration space has drastically different shapes depending on the value of the parameter g.
$N=4$

$N=5$

0	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{2}$	$\frac{3}{5}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{5}$

$N=6$

0	$\frac{1}{6}$	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{2}$	$\frac{3}{5}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{5}$	$\frac{5}{6}$

$N=7$

Figure: The range of $\alpha \beta g / \pi$ for $N=4,5,6,7$. The numbers displayed are excluded. Admissible values of g form intervals of type (i) (solid) and type (ii) (dashed) couplings.

Here we consider the case of type (i) couplings. They form punctured intervals around the points $2 \pi p / \alpha \beta N$, labelled by the coprimes $p \in\{1, \ldots, N\}$ of N. The parameter

$$
M=\frac{2 \pi}{\alpha} p-\beta N g
$$

helps to distinguish between couplings less/greater than $2 \pi p / \alpha \beta N$.
The standard interval $0<g<2 \pi / \alpha \beta N$ becomes the special case $p=1, M>0$.

Figure: The 3-particle configuration space Σ_{g} for $p=1$.

Here we consider the case of type (i) couplings. They form punctured intervals around the points $2 \pi p / \alpha \beta N$, labelled by the coprimes $p \in\{1, \ldots, N\}$ of N. The parameter

$$
M=\frac{2 \pi}{\alpha} p-\beta N g
$$

helps to distinguish between couplings less/greater than $2 \pi p / \alpha \beta N$.
The standard interval $0<g<2 \pi / \alpha \beta N$ becomes the special case $p=1, M>0$.

Figure: The 3-particle configuration space Σ_{g} for $p=1$.

Here we consider the case of type (i) couplings. They form punctured intervals around the points $2 \pi p / \alpha \beta N$, labelled by the coprimes $p \in\{1, \ldots, N\}$ of N. The parameter

$$
M=\frac{2 \pi}{\alpha} p-\beta N g
$$

helps to distinguish between couplings less/greater than $2 \pi p / \alpha \beta N$.
The standard interval $0<g<2 \pi / \alpha \beta N$ becomes the special case $p=1, M>0$.

Figure: The 3-particle configuration space Σ_{g} for $p=1$.

The configuration space $\Sigma_{g, p}$

For any fixed $p \in\{1, \ldots, N\}$ with $\operatorname{gcd}(N, p)=1$ the local configuration space is a simplex determined by lower/upper bounds on p-nearest neighbour distances:

$$
\Sigma_{g, p}=\left\{\boldsymbol{x} \in E \mid \operatorname{sgn}(M)\left(x_{j}-x_{j+p}-\beta g\right)>0, j=1, \ldots, N\right\} .
$$

Here we extended the indices in a periodic manner: $x_{N+k}=x_{k}-2 \pi / \alpha$.

Figure: Possible configurations for $N=3, p=1$.

The configuration space $\Sigma_{g, p}$

For any fixed $p \in\{1, \ldots, N\}$ with $\operatorname{gcd}(N, p)=1$ the local configuration space is a simplex determined by lower/upper bounds on p-nearest neighbour distances:

$$
\Sigma_{g, p}=\left\{\boldsymbol{x} \in E \mid \operatorname{sgn}(M)\left(x_{j}-x_{j+p}-\beta g\right)>0, j=1, \ldots, N\right\} .
$$

Here we extended the indices in a periodic manner: $x_{N+k}=x_{k}-2 \pi / \alpha$.

Figure: Possible configurations for $N=3, p=1$.

The configuration space $\Sigma_{g, p}$

For any fixed $p \in\{1, \ldots, N\}$ with $\operatorname{gcd}(N, p)=1$ the local configuration space is a simplex determined by lower/upper bounds on p-nearest neighbour distances:

$$
\Sigma_{g, p}=\left\{\boldsymbol{x} \in E \mid \operatorname{sgn}(M)\left(x_{j}-x_{j+p}-\beta g\right)>0, j=1, \ldots, N\right\} .
$$

Here we extended the indices in a periodic manner: $x_{N+k}=x_{k}-2 \pi / \alpha$.

Figure: Possible configurations for $N=3, p=1$.

Root system notation

Consider the standard basis $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{N}\right\} \subset \mathbb{R}^{N}$ and the usual inner product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{N}, i.e. $\left\langle\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle=\delta_{j k}$. Let us focus on the root system

$$
A_{N-1}=\left\{\boldsymbol{e}_{j}-e_{k} \mid j, k=1, \ldots, N, j \neq k\right\} \subset E
$$

For any $p \in\{1, \ldots, N\}$ relative prime to N we introduce the p-dependent base $\left\{\boldsymbol{a}_{1, p}, \ldots, \boldsymbol{a}_{N-1, p}\right\}$ of A_{N-1} consisting of the simple roots

$$
\boldsymbol{a}_{j, p}=\boldsymbol{e}_{j}-\boldsymbol{e}_{j+p}, \quad j=1, \ldots, N-1,
$$

where we employ the periodicity convention $\boldsymbol{e}_{j+N}=\boldsymbol{e}_{j}$. Let $\left\{\boldsymbol{\omega}_{1, p}, \ldots, \boldsymbol{\omega}_{N-1, p}\right\}$ denote the corresponding fundamental weights defined via

$$
\left\langle\boldsymbol{a}_{j, p}, \boldsymbol{\omega}_{k, p}\right\rangle=\delta_{j k}, \quad j, k=1, \ldots, N-1 .
$$

We drop the subscript p in the $p=1$ case.

Figure: Simple roots and fundamental weights for $N=3, p=1$.

Root system notation

Introduce the following weighted sum of fundamental weights

$$
\boldsymbol{\rho}_{p}=\beta g\left(\boldsymbol{\omega}_{1, p}+\cdots+\boldsymbol{\omega}_{N-p, p}\right)+\left(\beta g-\frac{2 \pi}{\alpha}\right)\left(\boldsymbol{\omega}_{N-p+1, p}+\cdots+\boldsymbol{\omega}_{N-1, p}\right) .
$$

Then the configuration space $\Sigma_{g, p}$ is the simplex consisting of points of the form

$$
\boldsymbol{x}=\boldsymbol{\rho}_{p}+\operatorname{sgn}(M) \sum_{j=1}^{N-1} m_{j} \boldsymbol{\omega}_{j, p}, \quad \text { with } \quad m_{j}>0, \quad \sum_{j=1}^{N-1} m_{j}<|M| .
$$

Let us also introduce the functions

$$
V_{\boldsymbol{\nu}}(\boldsymbol{x})=\prod_{\substack{\boldsymbol{a} \in A_{N-1} \\\langle\boldsymbol{a}, \boldsymbol{\nu}\rangle=1}} \frac{\sin \frac{\alpha}{2}(\langle\boldsymbol{a}, \boldsymbol{x}\rangle+\beta g)}{\sin \frac{\alpha}{2}\langle\boldsymbol{a}, \boldsymbol{x}\rangle} .
$$

Then the Hamiltonians can be written (in the center-of-mass frame E) as

$$
\mathcal{H}_{r}(\boldsymbol{x}, \boldsymbol{p})=\sum_{\boldsymbol{\nu} \in S_{N}\left(\boldsymbol{\omega}_{r}\right)} \cos (\beta\langle\boldsymbol{\nu}, \boldsymbol{p}\rangle) \sqrt{V_{\boldsymbol{\nu}}(\boldsymbol{x}) V_{\boldsymbol{\nu}}(-\boldsymbol{x})}, \quad r=1, \ldots, N-1 .
$$

The products $V_{\boldsymbol{\nu}}(\boldsymbol{x}) V_{\nu}(-\boldsymbol{x})$ are positive in $\Sigma_{g, p}$ and vanish at certain boundary points.

Compactiffed Trigonometric RS Model Quantum Case

The Hilbert space of lattice functions

Consider the uniform lattice $\Lambda_{p, M}$ consisting of points

$$
\boldsymbol{x}=\boldsymbol{\rho}_{p}+\operatorname{sgn}(M) \sum_{j=1}^{N-1} m_{j} \boldsymbol{\omega}_{j, p}, \quad \text { with } \quad m_{j} \in \mathbb{N}_{0}, \quad \sum_{j=1}^{N-1} m_{j} \leq|M|
$$

This lattice fits the classical configuration space $\Sigma_{g, p}$ iff the following quantisation condition is satisfied

$$
M=\frac{2 \pi}{\alpha} p-N g \in \mathbb{Z} \backslash\{0\}
$$

Let $L^{2}\left(\Lambda_{p, M}\right)$ denote the finite-dimensional vector space of lattice functions

$$
\phi: \Lambda_{p, M} \rightarrow \mathbb{C},
$$

equipped with the inner product

$$
(\phi, \psi)_{p, M}=\sum_{\boldsymbol{x} \in \Lambda_{p, M}} \phi(\boldsymbol{x}) \overline{\psi(\boldsymbol{x})} .
$$

Figure: The 3-particle lattice $\Lambda_{1,4}$.

Its dimension equals the cardinality of $\Lambda_{p, M}$, which is $\binom{N-1+|M|}{|M|}$.

The quantum Hamiltonians

The following difference operators commute [Ruijsenaars '87]:

$$
\hat{\mathcal{H}}_{r}=\sum_{\boldsymbol{\nu} \in S_{N}\left(\boldsymbol{\omega}_{r}\right)} V_{\boldsymbol{\nu}}^{1 / 2}(\boldsymbol{x}) \hat{T}_{\boldsymbol{\nu}} V_{\boldsymbol{\nu}}^{1 / 2}(-\boldsymbol{x}), \quad r=1, \ldots, N-1,
$$

where $\hat{T}_{\boldsymbol{\nu}}=\exp (\langle\boldsymbol{\nu}, \partial / \partial \boldsymbol{x}\rangle)$ is the translation operator acting on ϕ as

$$
\left(\hat{T}_{\boldsymbol{\nu}} \phi\right)(\boldsymbol{x})=\phi(\boldsymbol{x}+\boldsymbol{\nu}) .
$$

Let us introduce the operators

$$
\hat{\mathcal{H}}_{r, M} \equiv \sum_{\boldsymbol{\nu} \in S_{N}\left(\boldsymbol{\omega}_{r}\right)} V_{\boldsymbol{\nu}}^{1 / 2}(\boldsymbol{x}) \hat{T}_{\operatorname{sgn}(M) \boldsymbol{\nu}} V_{\boldsymbol{\nu}}^{1 / 2}(-\boldsymbol{x}) .
$$

Proposition. 1. $\hat{\mathcal{H}}_{N-r, M}$ is the formal adjoint of $\hat{\mathcal{H}}_{r, M}$. 2. The operators

$$
\hat{H}_{r, M}=\frac{1}{2}\left(\hat{\mathcal{H}}_{r, M}+\hat{\mathcal{H}}_{N-r, M}\right), \quad r=1, \ldots, N-1
$$

are well-defined and self-adjoint on the Hilbert space $L^{2}\left(\Lambda_{p, M}\right)$.

A factorised joint eigenfunction

Consider the lattice function $\Delta_{p}: \Lambda_{p, M} \rightarrow \mathbb{R}$ given by

$$
\Delta_{p}(\boldsymbol{x})=\prod_{\boldsymbol{a} \in A_{N-1, p}^{+}} \frac{\sin \frac{\alpha}{2}\langle\boldsymbol{a}, \boldsymbol{x}\rangle}{\sin \frac{\alpha}{2}\left\langle\boldsymbol{a}, \boldsymbol{\rho}_{p}\right\rangle} \frac{\left(\left\langle\boldsymbol{a}, \boldsymbol{\rho}_{p}\right\rangle+\operatorname{sgn}(M) g: \sin _{\alpha}\right)_{\left\langle\boldsymbol{a}, \boldsymbol{x}-\boldsymbol{\rho}_{p}\right\rangle}}{\left(\left\langle\boldsymbol{a}, \boldsymbol{\rho}_{p}\right\rangle+1-\operatorname{sgn}(M) g: \sin _{\alpha}\right)_{\left\langle\boldsymbol{a}, \boldsymbol{x}-\boldsymbol{\rho}_{p}\right\rangle}},
$$

where $\left(z: \sin _{\alpha}\right)_{m}$ stands for the trigonometric Pochhammer symbol

$$
\left(z: \sin _{\alpha}\right)_{m}= \begin{cases}1, & \text { if } m=0 \\ \sin \frac{\alpha}{2}(z) \ldots \sin \frac{\alpha}{2}(z+m-1), & \text { if } m=1,2, \ldots \\ \frac{1}{\sin \frac{\alpha}{2}(z-1) \ldots \sin \frac{\alpha}{2}(z+m)}, & \text { if } m=-1,-2, \ldots\end{cases}
$$

Recurrence relations. For any $\boldsymbol{x} \in \Lambda_{p, M}$ and $\boldsymbol{\nu} \in S_{N}\left(\boldsymbol{\omega}_{r}\right), r=1, \ldots, N-1$ satisfying $\boldsymbol{x}+\operatorname{sgn}(M) \boldsymbol{\nu} \in \Lambda_{p, M}$, we have

$$
\frac{\Delta_{p}(\boldsymbol{x}+\operatorname{sgn}(M) \boldsymbol{\nu})}{\Delta_{p}(\boldsymbol{x})}=\frac{V_{\boldsymbol{\nu}}(\boldsymbol{x})}{V_{\boldsymbol{\nu}}(-\boldsymbol{x}-\operatorname{sgn}(M) \boldsymbol{\nu})} .
$$

Corollary. $\Delta_{p}(\boldsymbol{x})^{1 / 2}$ is a joint eigenfunction of the quantum Hamiltonians $\hat{H}_{r, M}$.

Joint eigenfunctions

We define the lattice functions $\Psi_{\boldsymbol{y}, p}: \Lambda_{p, M} \rightarrow \mathbb{C}$ by letting

$$
\Psi_{\boldsymbol{y}, p}(\boldsymbol{x})=\frac{1}{\mathcal{N}_{0}^{1 / 2}} \Delta_{p}(\boldsymbol{x})^{1 / 2} \Delta_{p}(\boldsymbol{y})^{1 / 2} P_{\sigma_{p}(\boldsymbol{y})}(\check{\boldsymbol{x}})
$$

where $\check{\boldsymbol{x}}=\operatorname{sgn}(M)\left(\boldsymbol{x}-\frac{2 \pi}{\alpha} \sum_{j=1}^{N-1} \boldsymbol{\omega}_{j, p}\right)$ and $P_{\boldsymbol{\lambda}}$ denote the self-dual A_{N-1} Macdonald polynomials with parameters $t=e^{\mathrm{i} \alpha \operatorname{sgn}(M) g}, q=e^{\mathrm{i} \alpha}$. The self-dual property of $P_{\boldsymbol{\lambda}}$ entails that for any $\boldsymbol{x}, \boldsymbol{y} \in \Lambda_{p, M}$ we have

$$
\Psi_{\boldsymbol{y}, p}(\boldsymbol{x})=\Psi_{\boldsymbol{x}, p}(\boldsymbol{y})
$$

which in turn can be used to show that $\Psi_{\boldsymbol{y}, p}$ are joint eigenfunctions of the quantum Hamiltonians:

$$
\hat{H}_{r, M} \Psi_{\boldsymbol{y}, p}=E_{r}(\boldsymbol{y}) \Psi_{\boldsymbol{y}, p}, \quad r=1, \ldots, N-1
$$

Finally, the orthogonality of the Macdonald polynomials implies that $\Psi_{\boldsymbol{y}, p}$ form an orthonormal eigenbasis in $L^{2}\left(\Lambda_{p, M}\right)$.

Summary and plans for future work

In conclusion, we considered the new compact forms of trigonometric RS models with type (i) coupling parameters and

- defined the appropriate quantum Hamiltonians as difference operators acting on a finite-dimensional Hilbert space of lattice functions,
- explicitly solved the corresponding eigenvalue problem in terms of A_{N-1} Macdonald polynomials.
We intend to generalise these results to
- the case of type (ii) coupling parameters (in progress),
- compactified models attached to root systems other than A_{N-1},
- finite-dimensional representations of $\operatorname{SL}(2, \mathbb{Z})$,
- new quantum elliptic models?

