Rend és rendezetlenég a kvantumfizikában

Iglói Ferenc

Wigner FK SZFI SZTE Elm. Fiz. Tsz.

Wigner-115 Emlékülés, 2017. november 15.

Két probléma tárgyalása:

- Véletlenmátrix-elmélet és alkalmazása statisztikus mechanikai modellek integrálhatósági kérdéseire
- Véletlen kötésű kvantumos mágnesek fázisátalakulásának renormálási csoport vizsgálata

Véletlenmátrix-elmélet

Annals of Mathematics Vol. 53, No. 1, January, 1951

ON A CLASS OF ANALYTIC FUNCTIONS FROM THE QUANTUM THEORY OF COLLISIONS

BY EUGENE P. WIGNER

(Received April 27, 1950)

ANNALS OF MATHEMATICS Vol. 62, No. 3, November, 1955 Printed in U.S.A.

CHARACTERISTIC VECTORS OF BORDERED MATRICES WITH INFINITE DIMENSIONS

BY EUGENE P. WIGNER

(Received April 18, 1955)

ANNALS OF MATHEMATICS Vol. 67, No. 2, March, 1958 Printed in Japan

ON THE DISTRIBUTION OF THE ROOTS OF CERTAIN SYMMETRIC MATRICES

BY EUGENE P. WIGNER

(Received September 19, 1957)

Véletlenmátrix-elmélet

Motiváció: nagy atommagok spektruma többezer nívó statisztikus kérdések

A kölcsönhatás nagyon összetett, részleteiben nem ismert

Wigner elméleti megközelítése: a komplexitást véletlenszerüséggel helyettesíti

Az aktuális Hamilton operátort megfelelően választott véletlenszerű Hamilton operátorok sokaságának elemének választja

A leírás közelítő, de sok esetben igen pontos eredményre vezet

Analógia: véletlen számok összege – Gauss-eloszlás

Statisztikus sokaságok (Wigner-Dyson)

 $N \times N$ -es hermitikus mátrixok sokasága, a következő valószínűség eloszlással:

$$P(\mathcal{H}) = c \exp[-\beta \mathrm{Tr} V(\mathcal{H})]$$

- Ha $V(\mathcal{H}) \propto \mathcal{H}^2$, gausszi-sokaságról beszélünk.
- Ekkor a mátrixelemek független eloszlásúak.
- β = 1, 2, 4 a mátrixelemek szabadsági fokát számolja (valós, komplex, valós kvaternió)
- a H → UHU⁻¹ transzformáció hatására P(H) invariáns, annak megfelelően, hogy U ortogonális (β = 1), unitér (β = 2), szimplektikus (β = 4) mátrix, beszélünk ortogonális, unitér, szimplektikus sokaságokról.

Univerzalitási osztályok

Univerzális viselkedés, attól függően, hogy melyik véletlen mátrix sokaságba tartozik a Hamilton-operátor.

Gaussian Unitary Ensemble (GUE)

A Hamilton operátornak nincs időtükrözési szimmetriája, pl $\mathcal{H} = \frac{1}{2m}(\mathbf{p} - e\mathbf{A})^2 + V(x)$

Gaussian Orthogonal Ensemble (GOE)

A Hamilton-operátornak van időtükrözési szimmetriája, de nincs benne spin-pálya kölcsönhatás, pl. $\mathcal{H} = \frac{p^2}{2m} + V(x)$

Gaussian Symplectic Ensemble (GSE)

A Hamilton-operátornak van időtükrözési szimmetriája és van benne spin-pálya kölcsönhatás, pl. $\mathcal{H} = \frac{p^2}{2m} + V(x) + ALS$

Gausszi sokaságokra ismert eredmények

Sajátértékek együttes eloszlásfüggvénye

$$P_{\beta}(\lambda_1, \dots, \lambda_n) = C \prod_{i < j} |\lambda_i - \lambda_j|^{\beta} \exp\left(-A \sum_i \lambda_i^2\right)$$

(n-1)-integrálás után következik a Wigner-féle félkör-tétel:

$$P_N(x) \to P(x) = \frac{2}{\pi}\sqrt{1-x^2}, \quad x = \frac{\lambda}{2\sqrt{N}}$$

Szinttávolság statisztika (közelítő formulák) $s = \lambda_{n+1} - \lambda_n$

 $P_{\text{GOE}}(s) = \frac{\pi}{2} s \exp(-\pi s^2/4)$ Wigner-féle feltevés

 $P_{\rm GSE}(s) = \frac{64^3 s^4}{9^3 \pi^3} \exp(-64s^2/9\pi) \quad P_{\rm GUE}(s) = \frac{32s^2}{\pi^2} \exp(-4s^2/\pi)$

Integrálható rendszerek

Annyi felcserélhető operátort tartalmaz, amennyi a Hilbert-tér dimenziója

Létezik olyan, a paraméterektől független bázis, amelyben a Hamilton operátor diagonális.

Ebben a bázisban a diagonális elemek (a sajátértékek) tekinthetők véletlenszerűeknek.

Ez a Random Diagonal matrix Ensamble (RDE)

A szinttávolság eloszlás a Poisson-statisztikát követi:

 $P_{\rm RDE}(s) = \exp(-s)$

Alkalmazások

- Magfizika (sok-test rendszerek)
- Kvantum káosz-elmélet (néhány-test rendszerek)
- Mezoszkópikus és rendezetlen rendszerek
- Kvantum színdinamika
- Számelmélet Riemann-féle ζ -függvények zéró-helyei és a GUE
- Pénzügy, kockázatelemzés Korrelációs mátrixok analízise
- Statisztikus mechanika rácson

Statisztikus mechanika rácson

- Klasszikus: Ising modell, Potts modell, ... Transzfer-mátrix sajátértékek
- Kvantumos: Heisenberg modell, Hubbard modell, ...
 Hamilton-operátor sajátértékek
- Integrálható-e?

Crinttá volság statisztika Poisson closzlásá.

Nem integrálható?
 Szinttávolság statisztika Wigner-eloszlású.

Technikai lépések

- Hamilton-operátor blokk-diagonális alakra transzformálása
 Paraméterektől független szimmetriák felhasználásával
- Az egyes blokkokban a sajátértékek számolása A blokkok dimenziója < 10000, a rendszer mérete L=10-15
- Integrált állapotsűrüség: $\rho(\lambda) = {\rm reguláris} \cdot {\rm rész}(\lambda) + {\rm skála} \ge {\rm univerzális} \cdot {\rm rész}(\lambda)$
- Univerzális-rész:

 $R_1(\lambda) \mathrm{d}\lambda = \mathrm{d}\Lambda$

- Szinttávolság statisztika összehasonlítása
- RDE és GOE esetén interpolációs (Brody) formula:

 $P_{\beta}(s) = c(\beta + 1)s^{\beta} \exp\left(-cs^{\beta + 1}\right)$

 $\beta \sim 0.1$ integrálható, $\beta \sim 0.9\,$ nem-integrálható

Általánosított Hubbard-lánc

Brody β -paraméter , $U=\infty$

3

Háromdimenziós Ising modell

(H. Meyer, J.C. Anglés d'Auriac)

- Klasszikus Ising modell köbös rácson
- a csatolás két irányban azonos: $K_2 = 1$
- a harmadik irányban K_1 változó
 - $K_1 = K_2$ izotrop 3d modell
 - $K_1 = 0$ 2d modell, integrálható

Kvantumos Ising-lánc többspin kölcsönhatással

(J.C. Anglés d'Auriac, F. I.)

$$\mathcal{H} = -J\sum_{l} \sigma_{l}^{x} \sigma_{l+1}^{x} \dots \sigma_{l+m-1}^{x} - h\sum_{l} \sigma_{l}^{z}$$

- Klasszikus ekvivalens modell: 2d Ising modell 2-spin és m-spin kölcsönhatással
- Önduális pont: J=h, ez a fázisátalakulási pont
- *m=2:* kvantumos Ising-lánc, Onsager-megoldás
- *m=3:* másodrendű fázisátalakulás a *Q=4* Potts-modell univerzalitási osztályban
- *m=4,5,...* elsőrendű fázisátalakulás

Integrálható-e m>2 esetén?

Szinttávolság statisztika m=3, h/J=1.36

Brody β-paraméter

extra szimmetria az önduális pontban

Wigner-eloszlás nem integrálható

Összefoglalás I.

Véletlenmátrix-elmélet alkalmazása

- Klasszikus és kvantumos rácsmodellek operátorainak spektrumának analízise
- Szinttávolság statisztika Wigner-féle Brody-parameter: $\beta \sim 0.9$ nem integrálható modell
- Szinttávolság statisztika Poisson-féle Brody-parameter: $\beta \sim 0.1$ integrálható modell

J.-Ch. Anglés d'Auriac

Véletlen kötésű kvantumos mágnesek

- Termikus és kvantumos fluktuációk
- Kvantumos-klasszikus megfeleltetés
- Termikus, kvantumos és rendezetlenségi fluktuációk
- Rendezetlen kvantumos Ising modell
- Erős rendezetlenségi renormálási csoport
- Magasabb dimenziós alkalmazás
- Klaszterszerkezet és kritikus tulajdonságok

Termikus & kvantumos fluktuációk

LiHoF₄ dipol-kötésű kvantumos Ising ferromágnes

$$\mathcal{H} = -\sum_{i,j} J_{ij} \sigma_i^x \sigma_j^x - H_t^2 \sum_i \sigma_i^z$$

Kvantumos-klasszikus megfeleltetés

$$(P+1)_{0} \operatorname{dim}_{\mathcal{E}_{S}} k | \operatorname{asszikus}_{S}$$

$$T = \operatorname{termikus}_{S} kitikusság$$

$$T = \operatorname{termikus}_{S} kritikusság$$

$$T = \operatorname{termikus}_{S} kritikusság$$

$$T = \operatorname{termikus}_{S} kritikusság$$

$$K = \operatorname{termikus}_{S} k =$$

D-dim. kvantumos

Termikus & kvantumos & rendezetlenségi fluktuációk

kvantum Ising ferromágnes

(After Ancona-Torres et al, 2008)

a = b = 5.176 Å c = 10.75 Å

Rendezetlen kvantum Ising modell

$$\mathcal{H} = -\sum_{(ij)} J_{ij} \sigma_i^x \sigma_j^x - \sum_i h_i \sigma_i^z = egin{array}{cc} J_{ij}, h_i & ext{véletlen változók} \ (ij) & ext{első szomszéd} \end{array}$$

Véges, L méretű, rendszerben:

Statika: mágnesezettség [m]_{av}

Elméleti vizsgálatok

 ϵ — sorfejtés nem működik kvantum MC - lehetséges

Erős rendezetlenségi RCs ajánlott

Erős rendezetlenségi RCs $\mathcal{H} = -\sum J_{ij}\sigma_i^x\sigma_j^x - \sum h_i\sigma_i^z$

Lokális renormálás: egyszerre kezeli a kvantumos és a rendezetlenségi fluktuációkat

(i,j)

D. S. Fisher (1994): analitikus megoldás 1D-ben a kritikus pontban

Végtelenül rendezetlen fix-pont:

- 2 effektív csatolás aránya végtelenhez tart
- a renormálási lépések aszimptotikusan egzaktak

Mi a helyzet D>1 esetén?

J a legerősebb

J a legerősebb

h a legerősebb

h a legerősebb

Ha volt ott csatolás: maximum szabály

Minden lépésben csökken a spinek száma, de a csatolások száma erősen növekedhet!

Hatékony RCS algoritmus

"Tradícionális"

(Kovács & Iglói, 2011a,b)

a csatolások száma nem növekszik

A teljes klaszterszerkezet

L=64

L=512

Fizikai mennyiségek

- Fraktáldimenzió, d_f
- Mágnesezettség $m \sim L^{d_f d}$
- Klaszter kiterjedése
- korrelációs hossz

 $\xi \sim |\delta|^{-\nu}$

Klaszter energiája
 energia rés
 $\ln \epsilon \sim L^{\psi}$

(Kovács & Iglói, 2010)

Összefonódás: klaszterek száma

Számszerűsítése: Neumann entrópia

 $\mathcal{S} = -\mathrm{Tr}_{\mathcal{A}}(\rho_{\mathcal{A}} \log_2 \rho_{\mathcal{A}}) \quad \rho_{\mathcal{A}} = \mathrm{Tr}_{\mathcal{B}} |\Psi\rangle \langle \Psi|$

Felületi törvény: $\mathcal{S}(\ell) \sim \ell^{d-1}$

Kritikus pontban univerzális logaritmikus korrekciók

$$egin{aligned} \mathcal{S}_{1\mathrm{D}}(\ell) &= rac{c}{3}\log_2\ell \ \mathcal{S}_{2\mathrm{D}}(\ell) &= a\ell + b\ln\ell \ \mathcal{S}_{3\mathrm{D}}(\ell) &= a\ell^2 + b\ell + c\ln\ell \ \mathcal{S}_{4\mathrm{D}}(\ell) &= a\ell^3 + b\ell^2 + c\ell + d\ln\ell \end{aligned}$$

A felületi törvény teljesül, de a sarkok következtében megjelenik egy univerzális logaritmikus korrekció

(Kovács & Iglói, 2012)

Összefoglalás

A rendezetlen rendszerek egy tág osztályában:

- a kritikus viselkedés végtelenül rendezetlen,
- a rendezetlenségi fluktuációk abszolut dominánsak,
- az erős rendezetlenségi RCs aszimptotikusan egzakt.

Kapcsolódó munkák

- o nemegyensúlyi dinamika (Iglói et al, 2012)
- hosszú-hatótávolságú modellek (Juhász, Kovács, Iglói, 2014, 2015,2016)

Köszönetnyilvánítás

- J-C. Anglés d' Auriac
- E. Carlon
- B. Doucot
- J. Hooyberghs
- D. Karevski
- N. Kawashima
- Y-C. Lin
- R. Mélin
- M.-T. Mercaldo
- C. Monthus
- M. Preissmann
- H. Rieger
- L. Santen
- A. Sebő
- Zs. Szatmári
- L. Turban
- C. Vanderzande

OTKA K75324, K77629, K109577

Közvetlen és jelenlegi munkatársak:

Lajkó Péter

Juhász Róbert

Kovács István

Roósz Gergő

Köszönöm a figyelmet!