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Abstract

The non-selective and selective measurements of a self-adjoint observable
M in quantum mechanics are interpreted as ‘jumps’ of the state of the
measured system into a M-decohered or M-pure state characterized by the
spectral projections of M.
One may try to describe the measurement results as asymptotic states of a
dynamical process, where the non-unitarity of time evolution arises as an
effective description of the interaction with the measuring device.

We present here a two-step effective dynamics:
the first step is the non-selective measurement or M-decoherence, which is
known to be described by the linear Lindblad equation, where the generator
of the time evolution is the generator of a semigroup of unit preserving
completely positive maps.
The second step is a process from the resulted M-decohered state to an
M-pure state, which is described by an effective non-linear toy model
dynamics: the pure states arise as asymptotic fixed points, their
emergent probabilities are the relative volumes of their attractor regions.
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Measurements in quantum mechanics

• self-adjoint observable M =
∑

m∈σ(M) mPm ∈ B(H)

• prepared state ω : B(H)→ C of the measured subsystem B(H)

non-selective measurement:
ω 7→ ω ◦ ΦM , ΦM (A) :=

∑
m∈σ(M) PmAPm ∈ 〈M〉′

(H): any observable A "jumps" into the commutant 〈M〉′ ⊂ B(H)
containing the generated abelian subalgebra 〈M〉
(S): an M-decohered repreparation "jump" of the prepared state ω

selective measurement: e.g. Stern–Gerlach, double-slit experiments
ω 7→ ω ◦ Φm, Φm(A) := PmAPm/ω(Pm) with probability ω(Pm)
(H): "jump" into a spectral projecion Pm of M with probability ω(Pm)
(S): "jump" into an M-pure state with probability ω(Pm)
probability ω(Pm) = relative frequency of the spectral outcome m
in repeated experiments with identically prepared state ω

• both measurement "jumps" destroy unitary implemented dynamics
(H): α : (R,+)→ AutB(H), such that αt (A) := U∗t AUt , Ut ∈ U(H)
(S): ωt := ω ◦ αt , t ∈ R
and are not unitary implementable, selective is not even deterministic
• however both ΦM and Φm are completely positive (CP) maps
Φ⊗ Idn : B(H)⊗Mn → B(H)⊗Mn is positive (linear) ∀ n ∈ N
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Connection between CP maps and subsystems in QM

S=subsystem and the E=environment in QM: B(HS ⊗HE ) ' B(HS)⊗B(HE )

full system→ subsystem
if Ut ∈ U(HS ⊗HE ), t ∈ R is a unitary dynamics on the full system then

B(HS) 3 A 7→ Φt (A) := TrE [(1S ⊗ ρE )U∗t (A⊗ 1E )Ut ] ∈ B(HS)

unit preserving CP map on B(HS) ∀ t ∈ R
⇒ one may look for a "CP-dynamics" on the subsystem instead of a
unitary one

subsystem→ extended (= full) system
If Φ unit preserving σ-weakly continuous CP map on B(HS)⇒
∃ HE and V isometry on HS ⊗HE such that ∀ ρE ∈ S(HE )

Φ(A) = TrE [(1S ⊗ ρE )V ∗(A⊗ 1E )V ], A ∈ B(HS)

(V can be made unitary by a ρE -dependent further extension of HE )
⇒ every CP map on the subsystem comes from a restriction of a
isometric/unitary sandwiching on a full system
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Generator of a special CP dynamics: Lindblad operator

restriction on CP dynamics: special family of CP maps
• form a semigroup: Φt ◦ Φs = Φt+s; t , s ∈ R+,
• has a bounded generator L: Φt = exp(tL)
latter is not a restriction if B(H) = Mn(C)

Theorem (Lindblad; 1976) on the generator of a CP1 semigroup
Let L : B(H)→ B(H) bounded linear ∗-map.
Φt := exp(tL) ∈ CP1(B(H))σ, t ≥ 0⇔ L has the form

L(A) = i[H,A] +
∑

k

V ∗k AVk −
1
2
{V ∗k Vk ,A}, A ∈ B(H),

where H = H∗; Vk ,
∑

k V ∗k Vk ∈ B(H).

Lindblad equation: generalization of the Schrödinger equation
• ω : B(H)→ C normal state with density matrix ρ: ω(A) = Tr (ρA)
• H ↔ S picture change: Tr (L̂(ρ)A) := Tr (ρL(A))

dρ
dt

= L̂(ρ) := −i[H, ρ] +
∑

k

VkρV ∗k −
1
2
{V ∗k Vk , ρ}

linear first order differential equation on density matrices
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GP effective one particle state in Bose–Einstein condensation

Trapped interacting N-boson Hamiltonian in 3D: H⊗N ,H := L2(R3)

H̃N =
N∑

j=1

(−∆rj + Vext (rj )) +
N∑

i<j

VN(ri − rj )

• 0 < Vext (r)→∞, |r| → ∞
• 0 < VN(r) = VN(|r)| = N2V (N|r|)
smooth with compact support and scattering length a = a0/N
Conjectured effective one-particle description: Gross–Pitaevskii
equation (nonlinear, namely cubic) and energy functional in H

i∂tϕ(t) = −∆ϕ(t) + σ|ϕ(t)|2ϕ(t), ϕ(t) ∈ H, ‖ϕ‖ = 1

EGP(ϕ) :=

∫
d3r(|∇ϕ(r)|2 + Vext (r)|ϕ(r)|2 + 4πa0|ϕ(r)|4), ‖ϕ‖ = 1

Theorem (Lieb, Seiringer; 2002) on BE-condensation
Let ψN be the ground state of H̃N and let γ(k)

N , 1 ≤ k ≤ N be its k -particle
marginal density operator. Let σ := 8πNa = 8πa0 in the GP equation
and let ϕGP be the minimizer of EGP . Then

γ
(k)
N → |ϕGP〉〈ϕGP |k⊗, N →∞

pointwise for any fixed k .
P. Vecsernyés Toy model for selective measurement
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GP effective nonlinear dynamics after Bose–Einstein condensation

N-particle Hamiltonian with trap removed

HN =
N∑

j=1

−∆rj +
N∑

i<j

VN(ri − rj )

Theorem (Erdős, Schlein, Yau; 2007) on GP-dynamics
Let ψN(t) be the solution of the Schrödinger equation
i∂tψN(t) = HNψN(t) with H̃N ground state initial condition ψN(0) := ψN

and let γ(1)
N (t) be its one-particle marginal density. Then for any t ≥ 0

γ
(1)
N (t)→ |ϕ(t)〉〈ϕ(t)|, N →∞

pointwise for compact operators on H, where ϕt solves the GP-equation

i∂tϕ(t) = −∆ϕ(t) + 8πa0|ϕ(t)|2ϕ(t)

with initial condition ϕ(0) := ϕGP .
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Existence of initial state dependent effective dynamics

F = full system: S = subsystem and E = environment
B(HF ) := B(HS ⊗HE ) ' B(HS)⊗ B(HE )

initial density matrix (= initial normal state) on B(HS): ρS
0

⇒ compatible initial density matrices on B(HF ):

Tr−1
E (ρS

0 ) := {ρF
0 ∈ B(HF )+1 |TrE (ρF

0 ) = ρS
0 }

inverse image (normal states) of ρS
0 in B(HF )+1

effective time evolution from the unitary (Hamiltonian) one on B(HF )+1

dρS
0

dt
= −i TrE [HF , ρF

0 ]

heavily depends on the initial choice of ρF
0 ∈ Tr−1

E (ρS
0 )

through the surviving, ρF
0 -dependent "HS-blocks"

given probability distribution on Tr−1
E (ρS

0 ) ⇒
given probability distribution of effective (initial) dynamics on ρS

0
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Two types of effective dynamics in selective measurements (SM)

Instead of "jumps" try a "very fast" dynamical description of SM:
SM result should be an asymptotic state of an effective dynamics
caused by the interaction of the measured (sub)system
with the measuring device
• no modification of "fundamental" dynamics of quantum theories
• technical restriction: measured (sub)systems live in finite dimensional
Hilbert spaces⇒ M = M∗ =

∑
m∈σ(M) mPm ∈ B(H) ' Mn(C)

two types of effective dynamics for density matrices (S-picture)
ρ(t) ∈ Sn := Mn(C)+1 in two subsequent asymptotic steps
1. linear deterministic CP1-dynamics with M-decohered asymptotic state
(non-selective measurement) :

ρ0 → lim
t→∞

ρ(t) =: ρ∞ =
∑

m∈σ(M)

Pmρ0Pm

2. "randomly chosen" nonlinear deterministic dynamics with M-pure
asymptotic states Pm ∈ SM := Sn|〈M〉 with probability pm := Tr (ρ0Pm)

SM 3 ρ∞|〈M〉 =: µ0 → lim
t→∞

µ(t) =: µ∞ = Pm

P. Vecsernyés Toy model for selective measurement
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1. linear deterministic CP1-dynamics with M-decohered asymptotic state
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ρ0 → lim
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ρ(t) =: ρ∞ =
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m∈σ(M)

Pmρ0Pm

2. "randomly chosen" nonlinear deterministic dynamics with M-pure
asymptotic states Pm ∈ SM := Sn|〈M〉 with probability pm := Tr (ρ0Pm)

SM 3 ρ∞|〈M〉 =: µ0 → lim
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1. CP1 dynamics with specific Lindblad operators in SM

Describing M-decoherence, that is a non-selective measurement of
M = M∗ =

∑
m∈σ(M) mPm ∈ Mn(C), one can rely on previous works:

Baumgartner, Narnhofer (2008), Weinberg (2016)

Proposition The set of asymptotic states of a Lindblad evolution

dρ
dt

= L̂(ρ) := −i[H, ρ] +
∑

k

VkρV ∗k −
1
2
{V ∗k Vk , ρ}.

is equal to ΦM (Sn) iff {H,Vk ,V ∗k }′′ = 〈M〉. In this case any initial state
leads to an asymptotic state iff {Vk ,V ∗k }′′ = 〈M〉, and then

Sn 3 ρ0 → ρ∞ := lim
t→∞

exp(t L̂)(ρ0) = ΦM (ρ0) :=
∑

m∈σ(M)

Pmρ0Pm

Proof hint:
• P projection is ‘conserved’, P = exp(tL)(P), t ≥ 0 iff P ∈ {H,Vk ,V ∗k }′
⇒ {H,Vk ,V ∗k }′ = ΦM (Mn(C)) = 〈M〉′, i.e. the choice {H,Vk ,V ∗k }′′ = 〈M〉
leads to the required set of possible asymptotic states (the invariant states)
• {H,Vk ,V ∗k }′′ = 〈M〉 is abelian, hence L̂ = L(−H,V ∗k ) is a generator of CP1

maps⇒ Φ̂t , t ≥ 0 are norm one maps

P. Vecsernyés Toy model for selective measurement
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1. CP1 dynamics with specific Lindblad operators in SM

Proof hint continued:
• L̂ : Mn(C)→ Mn(C) is not self-adjoint (or normal in general wrt the scalar
product on Mn(C) given by the trace), but the generalized eigenvalue problem
(L̂− λ)k = 0 (in Jordan blocks), hence the time evolution can be solved:
Reλ ≤ 0 for k = 1 and Reλ < 0 for k > 1, because Φ̂t is a norm one map
• Reλ = 0⇔ L̂-eigenmatrix is in {Vk ,V ∗k }′ ⇒ nontrivial H-eigenvalues,
Reλ = 0, Imλ 6= 0 are excluded iff {Vk ,V ∗k }′′ = 〈M〉, in that case
all initial states lead to asymptotic states, which should be invariant states
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2. Nonlinear effective dynamics in selective measurements

Aim: "randomly chosen" nonlinear deterministic dynamics on SM := Sn|〈M〉
should result M-pure asymptotic states Pm with probability pm := Tr (ρ0Pm)

SM 3 µ0 := ρ∞|〈M〉 → µ∞ := lim
t→∞

µ(t) = Pm

SM , states (density matrices) on 〈M〉: convex combinations of spectral
projections of M, second step initial state µ0 :=

∑
m∈σ(M) pmPm

because non-selective measurement preserves probability pm

pm := Tr (ρ0Pm) =
∑

m′∈σ(M) Tr (Pm′ρ0Pm′Pm) = Tr (ρ∞Pm) = Tr (µ0Pm)
⇒ two-step dynamics is consistent with experiment
"randomly chosen" µext ∈ SM dependent dynamics: dµ/dt = F (µ, µext )
with F : SM × SM → 〈M〉sa

• effective description of the interaction change between the measuring
device and the measured system caused by various choices of the initial
state of the full system in the inverse image of the initial state µ0 of the
measured subsystem • simplest "randomness": uniform distribution of
µext ∈ SM with respect to the Lebesgue measure in SM ⊂ Rn−1

• note: uniqueness of effective GP-dynamics due to the uniquely chosen
initial state (sequence) |ψN〉〈ψN | of the full system in the inverse image
of the initial state γ(1)

N ' |ϕGP〉〈ϕGP | of the ‘measured’ subsystem

P. Vecsernyés Toy model for selective measurement



wigner-logo-ok06

NSM and SM in QM Effective dynamics Effective dynamics for SM Closing remarks1. CP1-dyamics in SM 2. nonlinear dyamics in SM

2. Nonlinear effective dynamics in selective measurements

Aim: "randomly chosen" nonlinear deterministic dynamics on SM := Sn|〈M〉
should result M-pure asymptotic states Pm with probability pm := Tr (ρ0Pm)

SM 3 µ0 := ρ∞|〈M〉 → µ∞ := lim
t→∞

µ(t) = Pm

SM , states (density matrices) on 〈M〉: convex combinations of spectral
projections of M, second step initial state µ0 :=

∑
m∈σ(M) pmPm

because non-selective measurement preserves probability pm

pm := Tr (ρ0Pm) =
∑

m′∈σ(M) Tr (Pm′ρ0Pm′Pm) = Tr (ρ∞Pm) = Tr (µ0Pm)
⇒ two-step dynamics is consistent with experiment
"randomly chosen" µext ∈ SM dependent dynamics: dµ/dt = F (µ, µext )
with F : SM × SM → 〈M〉sa

• effective description of the interaction change between the measuring
device and the measured system caused by various choices of the initial
state of the full system in the inverse image of the initial state µ0 of the
measured subsystem • simplest "randomness": uniform distribution of
µext ∈ SM with respect to the Lebesgue measure in SM ⊂ Rn−1

• note: uniqueness of effective GP-dynamics due to the uniquely chosen
initial state (sequence) |ψN〉〈ψN | of the full system in the inverse image
of the initial state γ(1)

N ' |ϕGP〉〈ϕGP | of the ‘measured’ subsystem

P. Vecsernyés Toy model for selective measurement



wigner-logo-ok06

NSM and SM in QM Effective dynamics Effective dynamics for SM Closing remarks1. CP1-dyamics in SM 2. nonlinear dyamics in SM

2. Nonlinear effective dynamics in selective measurements

Aim: "randomly chosen" nonlinear deterministic dynamics on SM := Sn|〈M〉
should result M-pure asymptotic states Pm with probability pm := Tr (ρ0Pm)

SM 3 µ0 := ρ∞|〈M〉 → µ∞ := lim
t→∞

µ(t) = Pm

SM , states (density matrices) on 〈M〉: convex combinations of spectral
projections of M, second step initial state µ0 :=

∑
m∈σ(M) pmPm

because non-selective measurement preserves probability pm

pm := Tr (ρ0Pm) =
∑

m′∈σ(M) Tr (Pm′ρ0Pm′Pm) = Tr (ρ∞Pm) = Tr (µ0Pm)
⇒ two-step dynamics is consistent with experiment
"randomly chosen" µext ∈ SM dependent dynamics: dµ/dt = F (µ, µext )
with F : SM × SM → 〈M〉sa

• effective description of the interaction change between the measuring
device and the measured system caused by various choices of the initial
state of the full system in the inverse image of the initial state µ0 of the
measured subsystem • simplest "randomness": uniform distribution of
µext ∈ SM with respect to the Lebesgue measure in SM ⊂ Rn−1

• note: uniqueness of effective GP-dynamics due to the uniquely chosen
initial state (sequence) |ψN〉〈ψN | of the full system in the inverse image
of the initial state γ(1)

N ' |ϕGP〉〈ϕGP | of the ‘measured’ subsystem

P. Vecsernyés Toy model for selective measurement



wigner-logo-ok06

NSM and SM in QM Effective dynamics Effective dynamics for SM Closing remarks1. CP1-dyamics in SM 2. nonlinear dyamics in SM

2. Nonlinear effective dynamics in selective measurements

Aim: "randomly chosen" nonlinear deterministic dynamics on SM := Sn|〈M〉
should result M-pure asymptotic states Pm with probability pm := Tr (ρ0Pm)

SM 3 µ0 := ρ∞|〈M〉 → µ∞ := lim
t→∞

µ(t) = Pm

SM , states (density matrices) on 〈M〉: convex combinations of spectral
projections of M, second step initial state µ0 :=

∑
m∈σ(M) pmPm

because non-selective measurement preserves probability pm

pm := Tr (ρ0Pm) =
∑

m′∈σ(M) Tr (Pm′ρ0Pm′Pm) = Tr (ρ∞Pm) = Tr (µ0Pm)
⇒ two-step dynamics is consistent with experiment
"randomly chosen" µext ∈ SM dependent dynamics: dµ/dt = F (µ, µext )
with F : SM × SM → 〈M〉sa

• effective description of the interaction change between the measuring
device and the measured system caused by various choices of the initial
state of the full system in the inverse image of the initial state µ0 of the
measured subsystem • simplest "randomness": uniform distribution of
µext ∈ SM with respect to the Lebesgue measure in SM ⊂ Rn−1

• note: uniqueness of effective GP-dynamics due to the uniquely chosen
initial state (sequence) |ψN〉〈ψN | of the full system in the inverse image
of the initial state γ(1)

N ' |ϕGP〉〈ϕGP | of the ‘measured’ subsystem

P. Vecsernyés Toy model for selective measurement



wigner-logo-ok06

NSM and SM in QM Effective dynamics Effective dynamics for SM Closing remarks1. CP1-dyamics in SM 2. nonlinear dyamics in SM

2. Nonlinear effective dynamics in selective measurements

Aim: "randomly chosen" nonlinear deterministic dynamics on SM := Sn|〈M〉
should result M-pure asymptotic states Pm with probability pm := Tr (ρ0Pm)

SM 3 µ0 := ρ∞|〈M〉 → µ∞ := lim
t→∞

µ(t) = Pm

SM , states (density matrices) on 〈M〉: convex combinations of spectral
projections of M, second step initial state µ0 :=

∑
m∈σ(M) pmPm

because non-selective measurement preserves probability pm

pm := Tr (ρ0Pm) =
∑

m′∈σ(M) Tr (Pm′ρ0Pm′Pm) = Tr (ρ∞Pm) = Tr (µ0Pm)
⇒ two-step dynamics is consistent with experiment
"randomly chosen" µext ∈ SM dependent dynamics: dµ/dt = F (µ, µext )
with F : SM × SM → 〈M〉sa

• effective description of the interaction change between the measuring
device and the measured system caused by various choices of the initial
state of the full system in the inverse image of the initial state µ0 of the
measured subsystem • simplest "randomness": uniform distribution of
µext ∈ SM with respect to the Lebesgue measure in SM ⊂ Rn−1

• note: uniqueness of effective GP-dynamics due to the uniquely chosen
initial state (sequence) |ψN〉〈ψN | of the full system in the inverse image
of the initial state γ(1)

N ' |ϕGP〉〈ϕGP | of the ‘measured’ subsystem

P. Vecsernyés Toy model for selective measurement



wigner-logo-ok06

NSM and SM in QM Effective dynamics Effective dynamics for SM Closing remarks1. CP1-dyamics in SM 2. nonlinear dyamics in SM

2. Nonlinear toy model dynamics for M-purification

nonlinear dynamics on SM = {
∑n

i=1 piPi | 0 ≤ pi ≤ 1,
∑

pi = 1}

dµ
dt

= F (µ, µext ) := f (µ, µext )− µTr f (µ, µext ), µ ∈ SM

f (µ, µext ) := aµ(λµ− µext ) (1)

• a > 0 ”evolution strength”
• λ ≡ λ(µ, µext ) := max{κ ∈ [0, 1] |µext − κµ ≥ 0},
that is µext ≡

∑
i siPi is the convex combintion µext = λµ+

∑
i 6=j λiPi

PP
1 2

P
3

ext

2
S (  )µ

µ

µ

Theorem on the fixpoint structure of the dynamics (1)
If µext ∈ SM is chosen uniformly wrt the Lebesgue measure on SM then
the asymptotic state µ∞ := limt→∞ µ(t) of the dynamics (1) on SM with
initial condition µ0 =

∑n
i=1 piPi is equal to Pi with probability pi .

P. Vecsernyés Toy model for selective measurement



wigner-logo-ok06

NSM and SM in QM Effective dynamics Effective dynamics for SM Closing remarks1. CP1-dyamics in SM 2. nonlinear dyamics in SM

2. Nonlinear toy model dynamics for M-purification

nonlinear dynamics on SM = {
∑n

i=1 piPi | 0 ≤ pi ≤ 1,
∑

pi = 1}

dµ
dt

= F (µ, µext ) := f (µ, µext )− µTr f (µ, µext ), µ ∈ SM

f (µ, µext ) := aµ(λµ− µext ) (1)

• a > 0 ”evolution strength”
• λ ≡ λ(µ, µext ) := max{κ ∈ [0, 1] |µext − κµ ≥ 0},
that is µext ≡

∑
i siPi is the convex combintion µext = λµ+

∑
i 6=j λiPi

PP
1 2

P
3

ext

2
S (  )µ

µ

µ

Theorem on the fixpoint structure of the dynamics (1)
If µext ∈ SM is chosen uniformly wrt the Lebesgue measure on SM then
the asymptotic state µ∞ := limt→∞ µ(t) of the dynamics (1) on SM with
initial condition µ0 =

∑n
i=1 piPi is equal to Pi with probability pi .

P. Vecsernyés Toy model for selective measurement



wigner-logo-ok06

NSM and SM in QM Effective dynamics Effective dynamics for SM Closing remarks1. CP1-dyamics in SM 2. nonlinear dyamics in SM

2. Fixpoint structure of the nonlinear toy model dynamics

Proof hint
• use Picard–Lindelöf theorem on first order differential equations on a region
with Lipschitz continuity for µext ≡

∑
i siPi ∈ S int

M

‖F (µ, µext )−F (µ̃, µext )‖∞ ≤ (4+
6
sj

)‖µ−µ̃‖∞, µ, µ̃ ∈ Dj (µext ) := Kj (µext )∩SM ,

Kj (ν): affine cone generated by ν − Pi , i 6= j with base ν ∈ SM

PP
1 2

P
3

ν

D (  )
3

ν

⇒ unique integral curves within the domains Dj (µext ), j = 1, . . . , n
• for µext = λµ+

∑
i 6=j λiPi and µ =

∑
i riPi the tangent vector is given by

F (µ, µext ) =
∑

i 6=j riλ(µ− Pi ) ∈ Kj (µ)
⇒ integral curve remains in Dj (µext ) and tends to the fixpoint Pj as t →∞
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2. Fixpoint structure of the nonlinear toy model dynamics

Proof hint continued
• uniform choice of µext within SM with ‘repeated’ initial state µ0 =

∑
i piPi

⇒ probability (= relative frequency in ‘repeated experiments’) of the
asymptotic state Pj is the relative volume of the simplices Sj (µ0) and SM :

V (Sj (µ0))

V (SM )
≡ V (〈µ0,P1, . . . ,Pj−1,Pj+1, . . . ,Pn〉)

V (〈P1, . . . ,Pn〉)
= pj

PP
1 2

P
3

ext

2
S (  )µ

µ

µ
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Closing remarks

In case of unbounded or continuous spectra M =
∫
σ(M)

mdE(m)

(e.g. a position operator in Rd )
write σ(M) ⊆ R as a partition of finitely many spectral intervals⇒
spectral interval projections generate a finite dimensional unital abelian
subalgebra of B(H)⇒ finite dimensional aproximations exist
In case of joint measurements of commuting operators M(1), . . . ,M(d)

(e.g. position operators in Rd )
use products of commuting spectral (interval) projections
P(1)

m1
P(2)

m2
. . .P(d)

md
,mi ∈ σ(M(i))

Experimental verification of the dynamical nature of measurements:
needs slow ‘measuring process’ and quick switch on/off possibility of the
measuring device without disturbing the state of the measured system
• instead of the outcome distribution at t =∞ from t = 0 data
given µ0 =

∑
piPi and uniform µext in SM 7→ µ∞ = Pi with probability pi

a switch-off and immediate switch-on at intermediate time 0 < T <∞
⇒ intermediate final distribution of µT as initial distribution with new
(uniformly chosen) µext may lead to a different asymptotic distibution of
µ∞, which is numerically calculable from the nonlinear toy dynamics
Try one-step dynamics: dρ/dt = L̂(ρ) + F̃ (ρ, µext ) with extended
F̃ : Sn × SM → Mn(C)sa ⇒ two-step dynamics may arise as a→ 0

P. Vecsernyés Toy model for selective measurement
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write σ(M) ⊆ R as a partition of finitely many spectral intervals⇒
spectral interval projections generate a finite dimensional unital abelian
subalgebra of B(H)⇒ finite dimensional aproximations exist
In case of joint measurements of commuting operators M(1), . . . ,M(d)

(e.g. position operators in Rd )
use products of commuting spectral (interval) projections
P(1)

m1
P(2)

m2
. . .P(d)

md
,mi ∈ σ(M(i))

Experimental verification of the dynamical nature of measurements:
needs slow ‘measuring process’ and quick switch on/off possibility of the
measuring device without disturbing the state of the measured system
• instead of the outcome distribution at t =∞ from t = 0 data
given µ0 =

∑
piPi and uniform µext in SM 7→ µ∞ = Pi with probability pi

a switch-off and immediate switch-on at intermediate time 0 < T <∞
⇒ intermediate final distribution of µT as initial distribution with new
(uniformly chosen) µext may lead to a different asymptotic distibution of
µ∞, which is numerically calculable from the nonlinear toy dynamics
Try one-step dynamics: dρ/dt = L̂(ρ) + F̃ (ρ, µext ) with extended
F̃ : Sn × SM → Mn(C)sa ⇒ two-step dynamics may arise as a→ 0
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