

Gazing at Matter above a Trillion of degrees

Vincenzo Greco - University of Catania

Inaugural Lecture AE P&E sciences, 3rd September 2017, Budapest, Hungary

Matter in unusual conditions...

Fermi's Notes on Thermodynamics and Statistics (1953)

Matter in unusual conditions...

Fermi's Notes on Thermodynamics and Statistics (1953)

Fermi put Nothing above 10^{12} K! if T > 10^{12} K ≈ 200 MeV \rightarrow KT= E $\approx 1/L$ $\rightarrow L < 1$ fm go inside a proton In the '50 and '60 there was nothing inside a proton

Now we know that...

Quarks and Gluons dynamics is driven by The Strong Interaction

blue

green

Gluons

aluon

areen

blue

QuantumChromoDynamics (QCD) - 1973 $L_{QCD} = \overline{\Psi} (i\gamma_{\mu}\partial_{\mu} - m_{i})\Psi - gA_{a}^{\mu}\overline{\Psi}\gamma_{\mu} t_{a}\Psi - \frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu}$

Quantum Electrodynamics (QED)

$$\mathcal{L}_{QED} = \overline{\Psi} \Big(i \gamma_{\mu} \partial_{\mu} - m_i \Big) \Psi - g A^{\mu} \overline{\Psi} \gamma_{\mu} \Psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Quantum Chromodynamics

♦ There are no free quark! → Confinement
♦ There are only white (neutral) objects

QCD is very strange and unique: built on particles that cannot be detected experimentally. Before QCD this would have been seen as anti(pre)-scientific!

QCD is very strange and unique: built on particles that cannot be detected experimentally. Before QCD this would have been seen as anti(pre)-scientific!

* No Chromomagnetic waves propagating in the vacuum!

There are still a lot of hadrons ...

hadron	m_i (GeV)	d_i	B_i	s_i	I_i	hadron	m_i (GeV)	d_i	B_i	s_i	I_i	
π	0.140	3	0	0	1	N (1535)	1.530	4	1	0	1/2	-
K	0.496	2	0	1	1/2	π ₁ (1600)	1.596	9	0	0	1	
\overline{K}	0.496	2	0	-1	1/2	Δ (1600)	1.600	16	1	0	3/2	
η	0.543	1	0	0	0	Λ (1600)	1.600	2	1	-1	0	
ρ	0.776	9	0	0	1	Δ (1620)	1.630	8	1	0	3/2	
ω	0.782	3	0	0	0	η_2 (1645)	1.617	5	0	0	0	
K^*	0.892	6	0	1	1/2	N (1650)	1.655	4	1	0	1/2	
\overline{K}^*	0.892	6	0	-1	1/2	ω (1650)	1.670	3	0	0	0	
N	0.939	4	1	0	1/2	Σ (1660)	1.660	6	1	-1	1	
η'	0.958	1	0	0	0	Λ (1670)	1 670	2	1	_1	0	
f_0	0.980	1	0	0	0	Σ (1670)	Density	of sta	ate in	crease	e exp	. with m
a_0	0.980	3	0	0	1	ω ვ (1670)	N					
ϕ	1.020	3	0	0	0	π ₂ (1670)	1000	non-s	trance	mesons		//
Λ	1.116	2	1	-1	0	Ω^{-}	500		lange		17	/
h_1	1.170	3	0	0	1	N (1675)					Som	
Σ	1.189	6	1	-1	1	φ (1680)	1			A. C.		
a_1	1.230	9	0	0	1	K* (1680)	100			a de la calegaria de la calega		
<i>b</i> ₁	1.230	9	0	0	1	K * (1680)	50		//	1		
Δ	1.232	16	1	0	3/2	N (1680)	•		, A	,		
f_2	1.270	5	0	0	0	ρ ₃ (1690)	10					
K_1	1.273	6	0	1	1/2	Λ (1690)	5					
\overline{K}_1	1.273	6	0	-1	1/2	三 (1690)	· -					
f_1	1.285	3	0	0	1	ρ (1700)	1	0.5	1	1.5	2	2.5 3
η (1295)	1.295	1	0	0	0	N (1700)	1.700	0	-	U	1/2	m [GeV]
π (1300)	1.300	3	0	0	1	$\Delta(1700)$	1.700	16	1	0	3/2	

Quantum Chromodynamics

Strong coupling constant

 $\alpha_{s}(Q^{2}) = \frac{g^{2}}{4\pi} \approx \log^{-1} \left(\frac{Q^{2}}{\Lambda_{QCD}^{2}} \right)$ $\Lambda_{QCD} \approx 200 MeV \approx 1 fm^{-1}$

e.m. coupling $\alpha_{e.m.}(Q^2) = \frac{e^2}{4\pi} = \frac{1}{137}$ $V(Q) \approx \frac{\alpha(Q^2)}{r}$

Two regimes:

- **Perturbative:** Asymptotic freedom ($Q \ge 20 \Lambda_{QCD}$)
- \rightarrow Interaction Increase with distance \neq other interaction
- → precise results for Early Universe at energies we can reach on Earth!!!

Non-Perturbative : Confinement

→ solvable only on Lattice QCD (i.e. integrating over about 10⁷ variables...)

✤ Confinement means "No Ionization" → No colored plasma ("charged" gas) like for atoms!?

If you have to stay confined to white spots how can you move freely?

NI 10/02/2000

A skier (quark) is Confined inside snow patches (hadrons) If you have to stay confined to white spots how can you move freely?

NI 10/02/2000

A skier (quark) is Confined inside snow patches (hadrons)

Temperature

The skier can move further ... a new phase develops

.. goes up

A skier (quark) can move freely ... over long distances

Quark-Gluon Plasma (5th state of matter)

1975: J.C. Collins M.J. Perry, "Superdense Matter or Asymptotically Free Quarks?", Phys. Rev. Lett. 34, 1353: "...matter at densities higher than nuclear consists of a quark soup. The **quarks become free** at sufficiently high density or temperature."

2000 – **CERN Statement**, Nature 403 : "evidence for the existence of a new state of quark-gluon matter in which quarks ... are liberated **to roam freely**... in which quarks and gluons are no longer confined but **free to move** around over a volume... quarks would then **freely roam**."

Quark-Gluon Plasma (5th state of matter)

1975: J.C. Collins M.J. Perry, "Superdense Matter or **Asymptotically Free** Quarks?", Phys. Rev. Lett. 34, 1353: "...matter at densities higher than nuclear consists of a quark soup. The **quarks become free** at sufficiently high density or temperature."

2000 – **CERN Statement**, Nature 403 : "evidence for the existence of a new state of quark-gluon matter in which quarks ... are liberated **to roam freely**... in which quarks and gluons are no longer confined but **free to move** around over a volume... quarks would then **freely roam**."

1975: Cabibbo & Parisi, Phys.Lett.B 59, 67, "Exponential hadronic spectrum and quark liberation". An hadronic resonance gas has a divergency in the partition function at $T=T_0 \approx 160 \text{ MeV} \rightarrow \text{phase transitions.}$

Note: Before "73 there was nothing to transit to. T₀ was limiting Temperature (Hagedorn)

Density of states $\rho(m)$ of hadronic matter wins over Boltmann suppression factor

$$\log Z(T,V) \propto \int_{m_0}^{\infty} dm \ m^{3/2} \ \rho(m) e^{-\frac{m}{T}} \propto \int_{m_0}^{\infty} dm \ m^{\alpha+3/2} \ e^{-m\left(\frac{1}{T}-\frac{1}{T_0}\right)}$$

Integral diverges for T->T₀:

Not related to Asymptotic Freedom!

Beyond naive argument: lattice QCD

Rescaled Energy Density

Wuppertal-Budapest Collab. (2010)

Stefan-Boltzmann limit not reached by 15-20 % : QGP as a weak interacting gas? But ε-3p>>0 strong interaction ...

Uninteresting question: What happens when I crash two gold nuclei together?

RHIC-BNL

LHC-CERN

Do we create fireworks? Or a plasma at some finite temperature?

Hadrons produced at T<T₀

E=mc² (+) E=KT energy used to produced new particles of mass m_i (j= π ,K, p, Λ , Ω , ...)

Particle Abundancy

Hadrons produced at T<T₀

E=mc² (+) E=KT energy used to produced new particles of mass m_j (j= π ,K, p, Λ , Ω , ...)

Particle Abundancy – Statistical Hadronization

$$\langle n_j \rangle = \frac{(2J_j + 1)V}{(2\pi)^3} \int d^3 p \left[e^{\sqrt{p^2 + m_j^2}/T + \boldsymbol{\mu} \cdot \mathbf{q}_j/T} \pm 1 \right]^{-1}$$

Does this mean it is a first order phase transition?

- No, lattice QCD says it is a cross-over.

+ P°

K

K+

π-

π+

- No, this behavior is due to confinement. This is a special matter!

How to study the properties of this strange QGP matter! Having a sample of 10⁻¹⁴ m that last for 10⁻²³ sec?

I will pick-up one example ...

Anisotropic Expansion in the tranverse plane

 $\varepsilon_{x} = \left\langle \frac{y^{2} - x^{2}}{y^{2} + x^{2}} \right\rangle \begin{bmatrix} \eta/s \\ c_{s}^{2} = 0 \end{bmatrix}$

Space Eccentricity

$$\eta$$
/s viscosity
 $c^2_s = dP/d\epsilon - EoS$

Elliptic Flow
$$v_{2} = \left\langle \frac{p_{x}^{2} - p_{y}^{2}}{p_{x}^{2} + p_{y}^{2}} \right\rangle = \left\langle \cos(2\phi_{p}) \right\rangle$$

Coefficient Fourier expansion

$$\frac{dN}{dp_T d\phi} = \frac{dN}{dp_T} \left[1 + 2v_2 \cos(2\phi) + \dots \right]$$

1.6 Normalized Counts b=4 fm 1.4 b= 6.5 fm b= 9.5 fm 0.8 0.6 0.4^L 0.5 1.5 2.5 2 1 3 Angle of emission ϕ_{lab} - Ψ_{plane} (rad) Schenke, Jeon, Gale, PRL 106 (2011) 042301

Elliptic Flow vs Viscosity

Just one Note ...

1) Trivial after solving Relativistic Viscous Hydrodynamics at II° order

$$\begin{aligned} \tau_{\Pi} \dot{\Pi} + \Pi &= \Pi_{\rm NS} + \tau_{\Pi q} q \cdot \dot{u} - \ell_{\Pi q} \partial \cdot q - \zeta \, \hat{\delta}_0 \,\Pi \,\theta \\ &+ \lambda_{\Pi q} q \cdot \nabla \alpha + \lambda_{\Pi \pi} \pi^{\mu\nu} \sigma_{\mu\nu} \\ \tau_q \,\Delta^{\mu\nu} \dot{q}_\nu + q^\mu &= q_{\rm NS}^\mu - \tau_{q\Pi} \Pi \, \dot{u}^\mu - \tau_{q\pi} \pi^{\mu\nu} \, \dot{u}_\nu \\ &+ \ell_{q\Pi} \nabla^\mu \Pi - \ell_{q\pi} \,\Delta^{\mu\nu} \partial^\lambda \pi_{\nu\lambda} + \tau_q \,\omega^{\mu\nu} \, q_\nu - \frac{\kappa}{\beta} \, \hat{\delta}_1 \, q^\mu \, \theta \\ &- \lambda_{qq} \, \sigma^{\mu\nu} \, q_\nu + \lambda_{q\Pi} \Pi \, \nabla^\mu \alpha + \lambda_{q\pi} \, \pi^{\mu\nu} \, \nabla_\nu \alpha \\ \tau_\pi \, \dot{\pi}^{<\mu\nu>} + \pi^{\mu\nu} &= \pi_{\rm NS}^{\mu\nu} + 2 \, \tau_{\pi q} \, q^{<\mu} \dot{u}^{\nu>} \\ &+ 2 \, \ell_{\pi q} \, \nabla^{<\mu} q^{\nu>\lambda} - 2 \, \eta \, \hat{\delta}_2 \, \pi^{\mu\nu} \, \theta \\ &- 2 \, \tau_\pi \, \pi_\lambda^{<\mu} \sigma^{\nu>\lambda} - 2 \, \lambda_{\pi q} \, q^{<\mu} \nabla^{\nu>\alpha} + 2 \, \lambda_{\pi \Pi} \Pi \, \sigma^{\mu\nu} \end{aligned}$$

All is done assuming that matter created is thermal at $\tau \approx O(1 \text{ fm/c})$

Report to the Nuclear Science Advisory Committee in 2013

One more thing about elliptic flow

Always one question bounces back! Can we see how and if quarks are flowing? Confinement: we can see only hadrons flowing My first Proceedings on QGP... Budapest 2002 Workshop on QUARK AND HADRON DYNAMICS

> In Honor of Judit Németh, István Lovas and József Zimányi

Texas A&M, October 2002 – gift from Peter Levai

Lévai

Budapest 2002 Workshop on Quark and Hadron Dynamic

Lévai

My first Proceedings on QGP... Budapest 2002 Workshop on QUARK AND HADRON DYNAMICS

In Honor of Judit Németh, István Lovas and József Zimányi

EP SYSTEMA

Texas A&M, October 2012 – gift from Peter Levai

Disccusing at lunch with **Peter Levai** (Director of MTA Wigner-Budapest...)

Budapest 2002 Workshop or Quark and Hadron Dynamic

Lévai

My first Proceedings on QGP... Budapest 2002 Workshop on QUARK AND HADRON DYNAMICS

In Honor of Judit Németh, István Lovas and József Zimányi

EP

Texas A&M, October 2012 – gift from Peter Levai

"In ALgebraic COalescenceRecombination model we assume that just before the hadronization the dense matter can be described as a mixture of dressed up, massive quarks and antiquarks ... " By J. Zimanyi and the Budapest group

> If you have a medium of quarks Why you need the vacuum to hadronize?

In Texas we moved to observables in momentum space

Recombination enhances Anisotropies

Meson recombination(qq) $f_{H}(\mathbf{P}_{H} = 2\mathbf{p}_{T}) \approx f_{q}(\mathbf{p}_{T}) \otimes f_{\overline{q}}(\mathbf{p}_{T})$ $\approx [1 + v_{2q}(p_{T})\cos(2\varphi_{p}) + ..]^{2} \approx 1 + 2v_{2q}(2p_{T})\cos(2\varphi_{p}) + ..$ $f_{H}(\mathbf{P}_{H} = 3\mathbf{p}_{T}) \approx f_{q}(\mathbf{p}_{T}) \otimes f_{q}(\mathbf{p}_{T})$ $\approx [1 + v_{2q}(p_{T})\cos(2\varphi_{p}) + ..]^{3} \approx 1 + 3v_{2q}(3p_{T})\cos(2\varphi_{p}) + ..$

Two branches

$$v_{2,M}(p_T) \approx 2v_{2,q}(p_T/2)$$

 $v_{2,B}(p_T) \approx 3v_{2,q}(p_T/3)$

Discarding space-momentum correlation, hadron wave function width, event-by-even fluctuations, Resonance decays, ...

Too beautiful to be true? ...

PHENIX, PRL 98(2007)

Anisotropic Flow formed at partonic level, one common QGP flow Flow depends on quark content \rightarrow two branches; Meson and Baryon

Too beautiful to be true ...

Everything rescales in one common flow! We "see" the underlying quark flow.. with some distorsion

an elephant in the liquid

ade Ma

Chris Weston / Barcroft Media

An elephant in the liquid: Heavy Charm Quark

Brownian motion

1992: B. Muller, NATO Advanced Study Institute "For plasma conditions realistically obtainable in the nuclear collisions (T ~250 MeV, g = 2) the *effective quark & gluon mass m*~400 MeV*. We must conclude, therefore, that the notion of almost *free gluons and quarks in the high T phase of QCD is quite far from the truth.*"

QGP created is made by 99% of q=u,d,s, $m_q \approx 10 \text{ MeV}$ + few Heavy Charm Quarks: $M_c \approx 1500 \text{ MeV}$

St<u>andard Kinetic theory</u>: Poorly dragged & long thermalization time

 $\tau_{\text{C,therm}} \approx O(10^2) \gg \tau_{\text{QGP}} \gg \tau_{\text{q,therm}} \approx O(1) \text{ fm/c}$

How they flow

Diffusion Coefficient of Charm Quark

Created matter is the Hot QCD matter in non perturbative regime!
 Likely a U shape typical of matter undergoing a phase transition
 T → Tc gets close to the AdS/CFT limit

Perspectives...

Characterizing viscosity η/s, bulk ζ/σ, conductivity σ_{el} , diffusion D_s :

- Important to understand QCD at high T up to pert. QCD regime
- Provide a precise background for cosmology (Ex. WIMP relic density...)

Study Matter behavior under Huge Magnetic fields (10¹⁸ Gauss)

- Charge-Parity violation in Strong Interaction?
- > At TeV scale new view on pp collisions is emerging
 - → relevance for High-Energy Astrophysics at PeV scale and above

A Great Honor to be a member of this Academia! A very pleasant feeling to see the benevolent view of elder Collegueas!

An emotional coincidence to enter AE in Budapest!

Degrees of freedom in the Universe

Disappeareance of colored matter the most drastic event

D.J.Schwartz, Ann. Phys. 2004

Degrees of freedom in the Universe

Disappeareance of colored matter the most drastic event

QCD EoS and the Relic WIMP Dark Matter

% variation of Ω due to different QCD EoS

Under the assumption of isoentropic Early Universe expansion

- We are now determining visccosities $\eta/s(T)$, $\zeta/s(T) \rightarrow$ entropy production
- We will see in the future the impact of the knowledge of Hot QCD

Another analogy with Early Universe expansion

Going deeply into Hot QCD matter

- Initial QCD quantum fluctuations
- \circ T dependence of η/s
- Equation of State
- Freeze-out dynamics

Keeping size and life-time of QGP

- Standard Model Matter
- Cold Dark Matter
- Dark Energy
- Hubble Constant

Keeping Age and Flatness of the Universe

Possible because at LHC one starts to create about than 10,000 particle per event

Beyond naive argument: lattice QCD

Perturbative regime $\alpha \approx \log(r/r_0) \le 0.25$

Average distance at ρ_c

Multifacets Physics

Why is Shear Viscosity is relevant

Text book kinetic theory

 $\frac{\eta}{s} \approx \frac{1}{15} \lambda$ Small $\eta/s \rightarrow$ small mean free path λ \Rightarrow strongly coupled system

 $\eta = (2.3 \pm 0.5) \cdot 10^8 Pa \cdot s$ 8 drops 1932-2013

At fimits of Quantum mechanism ($\langle p \rangle \approx \Delta E$, $\lambda \approx c\Delta t$) $\Delta E \cdot \Delta t \ge 1 \rightarrow \eta / s > 1/15$ which for QGP mean $\eta > 10^{11}$ Pa•s

AdS/CFT, based on the conjecture that a Gauge theory in 4D (in the infinite coupling limit) is dual to a gravitational calculation in 5D gives $\eta/s > 1/4\pi$

Shear viscosity of some substances

honey: $\eta \sim (2-10) Pa \cdot s$

water: $\eta \sim (10^{-3} - 10^{-4}) Pa \cdot s$

liquid ⁴He: T = 5.1 K $\eta = 1.7 \cdot 10^{-6} Pa \cdot s$

trapped ⁶Li: $T = 23 \cdot 10^{-6} \text{ K}$ $\eta \le 1.7 \cdot 10^{-15} Pa \cdot s$

QGP: $T = 2 \cdot 10^{12} \text{ K}$ $\eta \le 5 \cdot 10^{11} Pa \cdot s$

Two Notes ...

1) Trivial after solving Relativistic Viscous Hydrodynamics at II° order

$$\begin{aligned} \tau_{\Pi} \dot{\Pi} + \Pi &= \Pi_{\text{NS}} + \tau_{\Pi q} q \cdot \dot{u} - \ell_{\Pi q} \partial \cdot q - \zeta \, \hat{\delta}_{0} \Pi \, \theta \\ &+ \lambda_{\Pi q} q \cdot \nabla \alpha + \lambda_{\Pi \pi} \pi^{\mu\nu} \sigma_{\mu\nu} \\ \tau_{q} \Delta^{\mu\nu} \dot{q}_{\nu} + q^{\mu} &= q_{\text{NS}}^{\mu} - \tau_{q\Pi} \Pi \, \dot{u}^{\mu} - \tau_{q\pi} \pi^{\mu\nu} \, \dot{u}_{\nu} \\ &+ \ell_{q\Pi} \nabla^{\mu} \Pi - \ell_{q\pi} \Delta^{\mu\nu} \partial^{\lambda} \pi_{\nu\lambda} + \tau_{q} \, \omega^{\mu\nu} \, q_{\nu} - \frac{\kappa}{\beta} \, \hat{\delta}_{1} \, q^{\mu} \, \theta \\ &- \lambda_{qq} \, \sigma^{\mu\nu} \, q_{\nu} + \lambda_{q\Pi} \Pi \, \nabla^{\mu} \alpha + \lambda_{q\pi} \, \pi^{\mu\nu} \, \nabla_{\nu} \alpha \end{aligned}$$

$$\tau_{\pi} \, \dot{\pi}^{<\mu\nu>} + \pi^{\mu\nu} = \pi_{\text{NS}}^{\mu\nu} + 2 \, \tau_{\pi q} \, q^{<\mu} \dot{u}^{\nu>} \\ &+ 2 \, \ell_{\pi q} \, \nabla^{<\mu} q^{\nu>\lambda} + 2 \, \tau_{\pi} \, \pi_{\lambda}^{<\mu} \omega^{\nu>\lambda} - 2 \, \eta \, \hat{\delta}_{2} \, \pi^{\mu\nu} \, \theta \\ &- 2 \, \tau_{\pi} \, \pi_{\lambda}^{<\mu} \sigma^{\nu>\lambda} - 2 \, \lambda_{\pi \bar{q}} \, q^{<\mu} \nabla^{\nu>} \alpha + 2 \, \lambda_{\pi \Pi} \Pi \, \sigma^{\mu\nu} \end{aligned}$$

2) All is done assuming that matter created is thermal at $\tau \approx O(1 \text{ fm/c})$

η /s smoothen fluctuations and affect more higher harmonics

Ideal

 $\eta/s=0.16$

Shear Viscosity for systems in 20 order of T magnitudes!

Modified Hadronization in AA w.r.t. to ee, ep, pp

Ideal Hydrodynamics: a perfect fluid?

$$\begin{cases} \partial_{\mu} T^{\mu\nu}(x) = 0 \\ \partial_{\mu} j^{\mu}_{B}(x) = 0 \end{cases} \qquad T^{\mu\nu}(x) = \begin{bmatrix} \varepsilon + p \end{bmatrix} u^{\mu} u^{\nu} - p g^{\mu\nu} \qquad T_{f} \sim 120 \text{ MeV} \\ <\beta_{T} > \sim 0.5 \end{cases}$$

No microscopic description (λ ->0), no dissipation,...only conservation laws!

- Blue shift of dN/dp_T hadron spectra
- Large v_2/ϵ
- Mass ordering of v₂(p_T)

For the first time very close to ideal Hydrodynamics

Hadronization Modified

Baryon/Mesons

Fries-Greco-Sorensen - Ann. Rev. Part. Sci. 58, 177 (2008)

Last Result from LHC: ϕ flows also with n_q

P (qqq), ϕ (qq) with $M_p \approx M_{\phi}$

So do they flow at the same way: hydrodynamic flow?

 Φ flow with its constituent quark number!!!

Hadronization Modified: B/M Ratios

Ratio in Hadronization by Coalecence

What is the impact of coalescence?

- $R_{AA}(p_T)$ significant reshaped \rightarrow exp. data
- Opposite to energy loss Coalescence brings up both R_{AA} and v_2

Relativistic Heavy-Ion Collision when I was Young

With years we have been able to look inside the created matter deeper than expected ...

Upgrading the view on the matter created in HIC

Transverse view of HIC

Relativistic HIC in '90s, '00 till about 2005

Anisotropies $v_n = \langle \cos(n\phi_p) \rangle$ only with **even** parity due to symmetry

Jacak & Muller, Science 337 (2012) Due to fluctuations we can have odd v_3 harmonic!

All harmonics appearing with different weights.

Thanks to the great endeavor of experimentalist to measure even-by-event [Prof. R. Snelling at 17.50]

Quantum Chromodynamics

$$\mathcal{L}_{QCD} = \overline{\Psi} \left(i \gamma_{\mu} \partial_{\mu} - m_{i} \right) \Psi - g A^{\mu}_{a} \overline{\Psi} \gamma_{\mu} t_{a} \Psi - \frac{1}{\Lambda} G^{a}_{\mu\nu} G^{\mu}_{a}$$

 $F_a^{\mu\nu} = \partial^{\mu} A_a^{\nu} - \partial^{\nu} A_a^{\mu} + i f_{abc} A_b^{\mu} A_c^{\mu}$

Similar to QED but 3 charges!!!
Because they are "3" they are named "color charges":
With more than 1 charge → carrier of the interaction
→ must also be colored "charged"

Quantum Flutuations

G

Quantum Chromodynamics

G

$$\mathcal{L}_{QCD} = \overline{\Psi} \left(i \gamma_{\mu} \partial_{\mu} - m_i \right) \Psi - g A^{\mu}_a \overline{\Psi} \gamma_{\mu} t_a \Psi - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

 $F_a^{\mu\nu} = \partial^{\mu}A_a^{\nu} - \partial^{\nu}A_a^{\mu} + if_{abc}A_b^{\mu}A_c^{\mu}$

Similar to QED but 3 charges!!!
Because they are "3" they are named "color charges"
→ With more than 1 charge → carrier of the interaction has to be colored → completely different from QED!

Difference #1: At small distance quarks interacts less, this is a different World! Asymptotic freedom (Nobel 2004)