

Grain Boundary Engineering for Improved Mechanical Properties in SiAION Ceramics

Hasan Mandal

Sabancı University, Istanbul, TURKEY

MDA Advanced Ceramics Ltd, Eskisehir, TURKEY

Si₃N₄ and SiAlONs

Si+4Al+3Si+4Al+3N-3 O^{-2} N^{-3} O^{-2} Si_{6-z}Al_zO_zN_{8-z}Me_{m/val}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}

Sialons

*Reversible $\alpha \rightarrow \beta$ SiAlON Transformation in Heat-Treated Sialon Ceramics Mandal et al, 1993, Journal of European Ceramic Society

Application Areas of Si₃N₄ and SiAlONs

Cutting Inserts image courtesy of CeramTec Germany

Turbochargers image Courtesy of NGK/NTK Spark Plug Co

Bearing Applications

Swirl Chamber image courtesy of Kyocera company

Potential Application Areas of Si₃N₄ and SiAlONs

Wind Turbine Parts

Sand Blast Nozzle Liners

paper processing dewatering tiles

Diesel particulate filters

Cutting blades for wood machining

Wider mechanical, chemical and refractory applications

Properties in severe conditionsCost of powders and processing

DEVELOPMENT STRATEGIES

Phase relationships and grain boundary chemistry

SiAION Cocktail

EFFECT OF INTERGRANULAR PHASE CHEMISTRY

Crystalline Grain Boundary Phases

Hoffmann, M.J. and Satet R., "Impact of Intergranular Film Properties on Microstructure and Mechanical Behavior of Silicon nitride", Key Eng. Mater. Vols. 264-268, (2004), 775-780.

Shibata, N., Pennycook S., Gosnell, T.R., Painter, G.S., Shelton W.A. and Becher P.F. "Observation of rare earth segregation in silicon nitride ceramics at subnanometre dimensions", Nature, Vol 428, (2004), 730-733

SINTERING ADDITIVES FOR α/β SIAION CERAMICS DEVELOPED by MDA

US Patent No: US 7,064,095 B2 EP Patent No: 1 414 580 B1 2002

PROCESSING

- Powder:
 - a-Si3N4 (SN E-10, UBE/Japan)
- Composition:

Y Er:Sm:Ca Yb

Designed phase composition: 25% a-SiAlON - 75% β -SiAlON (x:0.42, m=1.25, n=1.3) (z = 0.2)

CRYSTALLISATION-AFFECTING FACTORS

(i) EFFECT OF DOPANTS							
	CATION SYSTEMS						
	Yb	1Yb:1Ce	Се	Yb <mark>:Sm</mark> :Ca	Y:Sm:Ca	Y:Ce:Ca	
Sintering	S _s /Y _s	-	-	-	M _w	M _s	

(ii) EFFECT OF HEAT TREATMENT

	CATION SYSTEMS							
	Yb	Yb: <mark>Sm</mark>	Yb: <mark>Sm:</mark> Ca	Y:Sm:Ca	Y:Ce:Ca			
Sintering	S _s /Y _s	-	-	M _w	Ms			
HT-1500	S _s /Y _s	S _s /Y _s	S _w /Y _w , M _w					
HT-1600	S _s /Y _s		M _w	M _s	M _{vs}			

Y: Ln₄SiAlO₈N ; S: Ln₂Si₂O₇ ; M: Ln₂Si_{3-x}Al_xO_{3+x}N_{4-x}

EP12185237, OZ12031EP-Q2/BR, 20 September 2012

Good or Bad Crystallinity!

Crsytalline Triple Pockets

Amorphous Intergranular Films

Amorphous Mini Triple Pockets

Undesirable crystalline triple pocket tip

Desired crystalline triple pocket

EP12185237, OZ12031EP-Q2/BR, 20 September 2012

Good or Bad Crystallinity!

Insufficient Crystallisation

Good Crystallisation

Comparison of Creep Behavior of Si_3N_4 and α/β -SiAlONs

Time (h)

Effect of Crystallinity on the Performance

Wider mechanical, chemical and refractory applications

Properties in severe conditions
Cost of powders and processing

DEVELOPMENT STRATEGIES

Phase relationships and grain boundary chemistry

a- β SiAION from β -Si₃N₄ powder containing impurities

D₅₀ = 5 μm

	<u>Al2O3</u>	MgO	CaO	Fe2O3	TiO2
β-Si₃N₄	1,4	≤0,05	0,40	0,60	0,07

Microstructures of SiAION from different particles size $\beta - Si_3N_4$ powders

As-sintere

Heat treated

Anadolu University EHT = 20.00 kV Material Sci.&Eng. WD = 8 mm Date :24 Oct 2007 Mag = 5.00 KX

Anadolu University EHT = 20.00 kV Material Sci.&Eng. WD = 7 mm Date :24 Oct 2007 Mag = 5.00 KX

Impurity/dopant incorporation into β -SiAlON

STEM-HAADF Image

Si6-z(AI,Fe)zOzN8-z

Improved grain boundary crystallization Transient liquid phase sintering Impurity incorporation

Cost reduction

Use of coarse and/or impure and/or β-Si₃N₄ powders
Increased amount of (crystallizable) liquid phase
Lower temperature and/or pressureless sintering

Conclusion

Opportunities are present to increase the applications of SiAION based ceramics by **chemistry** and **process improvement**.

