
1DEPT. OF ELECTRICAL ENGINEERING AND INFORMATION SY STEMS,
UNIVERS ITY OF PANNONIA, VESZPREM, HUNGARY

2DEPT. OF COMPLEX FLUIDS, INST ITUTE FOR SOLID STATE PHY S ICS AND
OPTICS, WIGNER RESEARCH CENTRE FOR PHY SICS, BUDAPEST, HUNGARY

Highly Parallel GPU-based

Particle-in-Cell/MCC Plasma Simulation

ZOLTAN JUHASZ1, PETER HARTMANN2 AND ZOLTAN DONKO2

OVERVIEW

Intro to plasma simulation

Structure of sequential execution

Parallel execution strategies

GPU implementation

Performance turning

Current results and conclusions

2

PLASMA SIMULATION

Understanding capacitively coupled radiofrequency
discharges in plasma

Spatiotemporal changes in electric field

Non-equilibrium transport of particles

Numerical simulation helps to understand
the behaviour of particles

Uses kinetic theory for describing particle
movement

3

PLASMA SIMULATION

Particle-in-Cell simulation method, Monte-Carlo collisions

Particles interact via the electric field

Sequential program written in C, verified and validated by real experiments

Total simulation execution time varies from hours to days (even several weeks)

1. move

electrons

2. check

boundaries

3. electron

collision

4. electron

density

5. move

ions

6. check

boundaries

7. ion-electron

collision

8. ion

density

9. Poisson

solver

Loop for simulation cycles (1000-3000)

Loop for input samples (800)

4

PARALLEL APPROACHES, EXPECTATIONS

Per step execution time: 3.1-5.4 msec, total time 3100+ seconds

Outer loops strictly sequential, particle-level ops can be parallel

GOAL: minimum 10x speedup (310-540 usec)

Where and how to start?

 Keep existing program intact, no re-write, minimal alteration, ideally incremental changes

 OpenMP (ideal candidate from SW Eng point of view) ?

 GPUs ?

5

GPU STRATEGY: ISSUES TO CONSIDER

CPU-GPU interaction, division of work

How to map problem to kernels?

Many small kernels or few large kernels?

How to port/parallelise existing code?

 how many threads to use? – PIC cell geometry!!!

 max # of resident threads? 14 336 (Kepler-3.0), 32 768 (Maxwell-5.2), 81 920 (Pascal-6.1)

Extreme scale processing – not necessarily a straight path from sequential code

Data transfer: host-device, device to chip

Other optimisation techniques?

6

One kernel for each step of the simulation
cycle

Each kernel:
 reads input data

 compute/modify

 store results

Potential performance problems
 too many kernel launches

 low compute intensity

 host-device data transfer

 latency issues

 memory conflicts

 no kernel concurrency

 data structure updates

 random number generation

 Poisson solver

7

INITIAL IMPLEMENTATION

EXECUTION PROFILING (10 X 800 STEPS)
nvprof output (GTX 1080)

Time(%) Time Calls Avg Min Max Name

22.56% 329.65ms 8000 41.206us 38.913us 49.154us electrons_density_kernel

18.85% 275.57ms 8000 34.446us 33.792us 39.937us ions_density_kernel

13.22% 193.28ms 8000 24.160us 21.312us 32.609us electrons_collisions_kernel

12.88% 188.27ms 8000 23.533us 21.441us 27.649us ions_collisions_kernel

11.68% 170.69ms 8000 21.336us 20.480us 210.95us ions_move_kernel

10.76% 157.20ms 8000 19.650us 18.208us 204.81us electrons_move_kernel

4.63% 67.716ms 24132 2.8060us 0ns 27.379ms [CUDA memcpy HtoD]

3.70% 54.091ms 32010 1.6890us 1.0240us 8.1930us [CUDA memset]

1.71% 25.062ms 40102 624ns 256ns 39.905us [CUDA memcpy DtoH]

200-600 usec, depending on GPU generation (Kepler, Maxwell, Pascal)
8

20x speedup on GTX 1080

from 1 hour down to 3 minutes

9

electron

move

PERFORMANCE TUNING: KERNEL EXECUTION

10

electron

collision

electron

density

electron

move

electron

collision

electron

density
Poisson

electrons ions Poisson

electrons

ions

Poisson

fused kernels

concurrent kernels

electrons improvement:

625.5 usec 520 usec

1.2x faster on a K2000M

ITERATIVE IMPROVEMENTS
Analyse what to change, why – Nsight, Visual Profiler, nvprof

Check effects of occupancy (block/grid size), instruction latency, use of concurrent
kernels, streams, etc.

Instruction pipeline – more particles per kernel, unrolled loops

Use of shared memory – electric field, can be read by all threads in a block without
memory bank conflict

Data structure manipulation – removing/inserting particles; not trivial on GPU!

Random number generation – cuRAND or not cuRAND?

Density calculation – ‘histogram’ code using Maxwell shared mem atomic support

Poisson solver – CPU or GPU?

11

1D VERSION RESULTS

20x speedup compared to original
code

 1000 cycles – 3 minutes

 in-kernel optimisations

 new random number generator

Accuracy is satisfactory

Further optimisation is in progress

 program-level optimisation

 fused and concurrent kernels

 new GPU Poisson solver

12

CONCLUSIONS

13

Think how to re-design algorithms for extreme scale parallelism (100k-1million threads)

Architecture internals and versions are important (Kepler, Maxwell, Pascal)

 better memory performance

 improved atomics (global and shared)

1D simulation performance better
than expected (20x)

PLUS, first 2D version is operational

 50 million particles

 90x speedup

 1 day instead of 90 days

 may improve eve more with further optimisations

