A quantum Monte Carlo approach to the nonequilibrium steady state of open quantum systems

Alexandra Nagy

Laboratory of Theoretical Physics of Nanosystems École Polytechnique Fédérale de Lausanne, Switzerland

GPU Day 2017

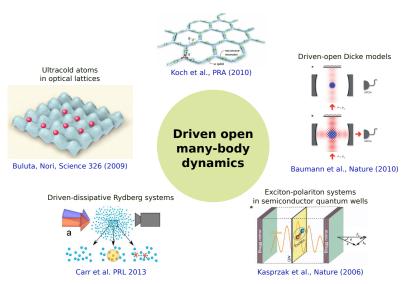
Alexandra Nagy EPFL

A QMC approach to open quantum systems

- Nonequilibrium dynamics of many-body open quantum systems
- A real-time quantum Monte Carlo approach to the steady state
- Parallel implementation, benchmarking, first results

http://ltpn.epfl.ch

Coupled microcavity arrays



Introduction

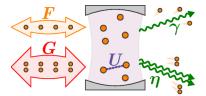
Open quantum systems

- Coupling to an external environment
- The time evolution follows the Liouville-von-Neumann master equation

$$\dot{\hat{\rho}}(t) = \mathcal{L}\hat{\rho}$$

$$\dot{\hat{\rho}} = -\frac{i}{\hbar}[\hat{H},\hat{\rho}] - \frac{\gamma}{2}\sum_{j}\left[\left\{\hat{K}_{j}^{\dagger}\hat{K}_{j},\hat{\rho}\right\} - 2\hat{K}_{j}\hat{\rho}\hat{K}_{j}^{\dagger}\right]$$

Long-time limit : nonequilibrium steady state (NESS)



Bartolo et al., PRA 94, (2016)

Alexandra Nagy EPFL

Hamiltonian system

 $\blacksquare \text{ Imaginary-time dynamics of } \psi(\tau)$

 $\dot{\psi}(\tau) = -(\hat{H} - E_0)\psi(\tau)$

- Eigenvalues E of \hat{H} have $E > E_0$
- Long-time limit is ground state :

 $e^{-\tau(\hat{H}-E_0)}:\psi_{in}\xrightarrow{\tau\to\infty}\psi_0$

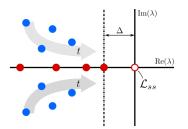
Lindbladian system

Real-time dynamics of $\hat{\rho}(t)$

$$\dot{\hat{\rho}}(t) = \mathcal{L}\hat{\rho}$$

- Eigenvalues λ of \mathcal{L} have $\operatorname{Re}(\lambda) \leq 0$
- Long-time limit is NESS :

$$e^{\mathcal{L}t}:\rho_{in}\xrightarrow{t\to\infty}\rho_{ss}$$



Projector Monte Carlo techniques

- Imaginary time dynamics $\xrightarrow{\tau \to \infty}$ exponentially decaying transients
- Stochastic implementation of the power method

$$\psi(\tau + \Delta \tau) = \hat{P}(\Delta \tau)\psi(\tau)$$

Imaginary-time propagator

$$\hat{P}(\Delta \tau) = e^{-\Delta \tau (\hat{H} - E_0)}$$

Projector Monte Carlo techniques

- Imaginary time dynamics $\xrightarrow{\tau \to \infty}$ exponentially decaying transients
- Stochastic implementation of the power method

$$\psi(\tau + \Delta \tau) = \hat{P}(\Delta \tau)\psi(\tau)$$

Imaginary-time propagator

$$\hat{P}(\Delta \tau) = e^{-\Delta \tau (\hat{H} - E_0)}$$

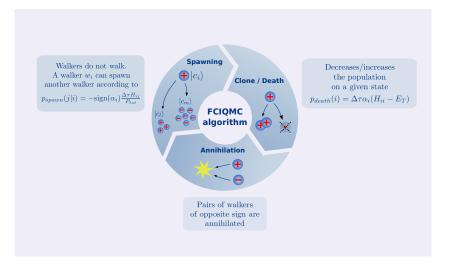
FCIQMC - Full Configuration Interaction Quantum Monte Carlo

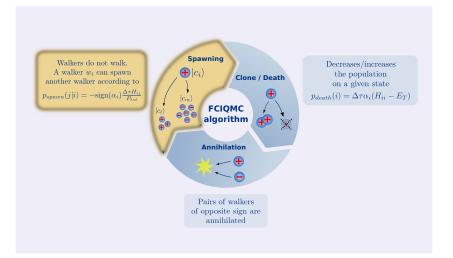
- Linear projector : $\hat{P}(\Delta \tau) = \hat{I} \Delta \tau (\hat{H} E_0)$
- Spanning on a basis set {|c_i⟩}

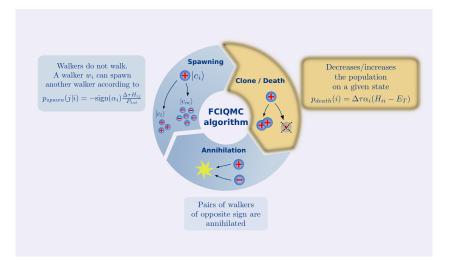
$$\psi(\tau) = \sum_{i} \alpha_{i}^{\tau} |c_{i}\rangle$$

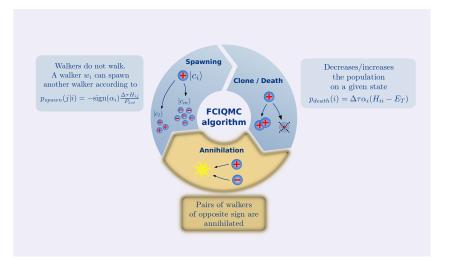
• "Walking" : $\alpha_i \propto n_i w_i, w_i = \pm 1$

$$\alpha_i^{(\tau+\Delta\tau)} = [1 - \Delta\tau(H_{ii} - E_T)]\alpha_i^{\tau} - \Delta\tau\sum_{j\neq i} H_{ij}\alpha_j^{\tau}$$









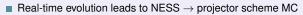
Sign problem in QMC

- In simulation of fermions or frustrated magnets
- \blacksquare QMC, a large family tree \rightarrow various manifestation
- An undesired state grows relative to the state of interest
- Exponential error growth

Why FCIQMC?

- No need to store the whole Hilbert-space
- Annihilation \rightarrow stable signal to noise ratio
- Severe sign problem \rightarrow increasing walker population
- Highly parallelizable algorithm

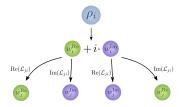
Driven-dissipative QMC - extension to open systems



Sample the complex-valued density matrix

$$\rho_i(t + \Delta t) \simeq \rho_i(t) + \sum_j (\mathcal{L}_{ij} - S\delta_{ij})\rho_j(t)\Delta t$$

Two types of walkers : real and imaginary



Additional refinements

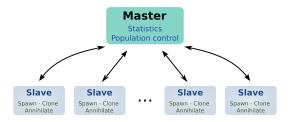
- Importance sampling
- Initiator approach
- Problem-specific basis states

Alexandra Nagy EPFL

Parallel implementation

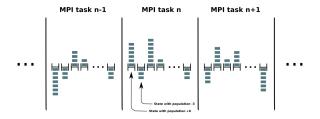
Main ideas

- FCIQMC is highly parallelizable
- Implemented in C++
- parallelization with MPI
- Master Slave architecture
- Modular structure
- Efficient and scalable annihilation algorithm

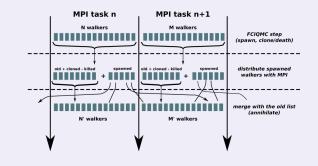


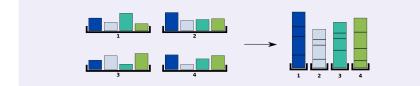
Performance

- Dual hashing procedure
 - 1 Hash table for storing state information
 - 2 Hash function for state distribution among MPI tasks
- States are coded in bitset representation → broken into 16-bit integer array

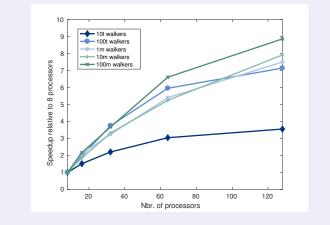


Parallel implementation





Increasing population \rightarrow increasing parallel performance



Preliminary results

Benchmarking

- Benchmarking and performance test on Hamiltonian systems
 - Sign problem free 1D antiferromagnetic Heisenberg-model
 - 2 Severe sign problem 2D frustrated Heisenberg-model
- Match with analytical results even for large system sizes

Preliminary results

Benchmarking

Benchmarking and performance test on Hamiltonian systems

- Sign problem free 1D antiferromagnetic Heisenberg-model
- 2 Severe sign problem 2D frustrated Heisenberg-model
- Match with analytical results even for large system sizes

A system as a "proof of principle"

2D spin-1/2 lattice governed by the Heisenberg XYZ Hamiltonian ($\hbar = 1$)

$$\hat{H} = \sum_{\langle i,j \rangle} \left(J_x \hat{\sigma}_i^x \hat{\sigma}_j^x + J_y \hat{\sigma}_i^y \hat{\sigma}_j^y + J_z \hat{\sigma}_i^z \hat{\sigma}_j^z \right)$$
$$\dot{\hat{\rho}} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}] - \frac{\gamma}{2} \sum_j \left[\left\{ \hat{\sigma}_j^+ \hat{\sigma}_j^-, \hat{\rho} \right\} - 2\hat{\sigma}_j^- \hat{\rho} \hat{\sigma}_j^+ \right]$$

- Mean-field phase diagram known [Lee et al., PRL 110, (2013)]
- Presence of dissipative phase transition [Rota et al., PRB 95, (2017)]

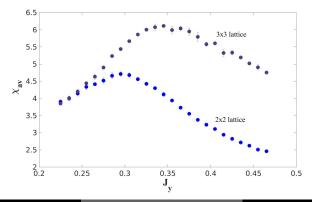
Figure : Leblanc, Journal Phys. Cond. M. 25, (2013)

How to detect the phase transition ? [Rota et al. PRB 95, (2017)]

In presence of an applied field : $\hat{H}_{ext}(h,\theta) = \sum_{i} h(\cos(\theta)\hat{\sigma}_{j}^{x} + \sin(\theta)\hat{\sigma}_{j}^{y})$

The angularly-averaged susceptibility

$$\chi_{av} = \frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\theta \frac{\partial |\vec{M}(h,\theta)|}{\partial h} \Big|_{h=0}$$



Motivation

- Experimental progress
- Major challenges in simulation
- Mutual features in Lindbladian dynamics and imaginary-time Schrödinger equation
- A generalized PMC method for open systems

What's done

- Highly efficient, parallel implementation
- Benchmarking on different Hamiltonian lattice models
- A "proof of principle" on open systems
- In progress : larger system sizes, different models (e.g. driven-dissipative Bose-Hubbard, boundary dissipative problems, ...)

Thank you for your attention !

1D antiferromagnetic Heisenberg-model

The Hamiltonian

$$\hat{H} = J\sum\limits_{\langle i,j\rangle} \mathbf{S}_i \mathbf{S}_j$$

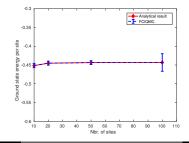
- Antiferromagnet : J > 0
- On bipartite lattice it is sign problem free

gauge transformation on one sublattice \rightarrow all matrix elements are positive

$$\frac{J}{2}(S_i^+S_j^- + S_i^-S_j^+) \xrightarrow{S_i^\pm \to (-1)^{|i|}S_i^\pm} - \frac{J}{2}(S_i^+S_j^- + S_i^-S_j^+)$$

(although we don't use any transformation)

■ Analytical solution known ⇒ benchmark model



Alexandra Nagy EPFL

2D frustrated Heisenberg-model

The model

The Hamiltonian

$$\hat{H} = J_1 \sum_{\langle \mathbf{i}, \hat{\mathbf{e}} \rangle} \mathbf{S}_{\mathbf{i}} \mathbf{S}_{\mathbf{i}+\hat{\mathbf{e}}} + J_2 \sum_{\langle \mathbf{i}, \hat{\mathbf{d}} \rangle} \mathbf{S}_{\mathbf{i}} \mathbf{S}_{\mathbf{i}+\hat{\mathbf{d}}}$$

- where $J_1, J_2 > 0$, $\hat{\mathbf{e}}(= \hat{\mathbf{x}}, \hat{\mathbf{y}})$, and $\hat{\mathbf{d}}(= \hat{\mathbf{x}} \pm \hat{\mathbf{y}})$
- Frustrated system ⇒ sign problem
- Complex dynamics and variety of phase transitions
 - Small frustration regime : Néel order
 - Strong diagonal interaction : collinear order
 - Intermediate coupling ratio : suggestions of various types of RVB

Order parameter estimators

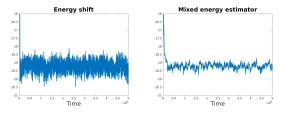
Néel order parameter :
$$M^2 = \left\langle \left(\frac{1}{N} \sum_{\mathbf{r}} (-1)^{x+y} S_{\mathbf{r}}^z \right)^2 \right\rangle$$

Collinear order parameter :

$$\chi_{col} = \left\langle \left(\frac{1}{N} \sum_{\mathbf{r}} \mathbf{S}_{\mathbf{r}} (\mathbf{S}_{\mathbf{r}+\hat{\mathbf{x}}} + \mathbf{S}_{\mathbf{r}-\hat{\mathbf{x}}} - \mathbf{S}_{\mathbf{r}+\hat{\mathbf{y}}} - \mathbf{S}_{\mathbf{r}-\hat{\mathbf{y}}}) \right)^2 \right\rangle$$

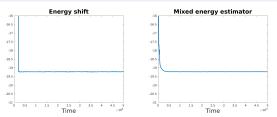
VBS order parameter : $D^2 = \langle D_x^2 + D_y^2 \rangle$, where $D_i = \frac{1}{N} \sum (-1)^{i_r} \mathbf{S_r} \mathbf{S_{r+\hat{i}}}$

Increasing the walker population effectively reduces the stochastical error



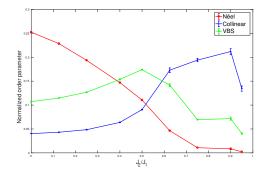
10.000 walkers

10.000.000 walkers



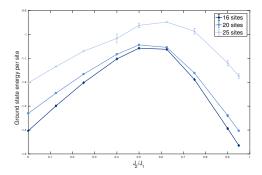
Normalized order parameter estimators

- System size : 16 sites
- Supports the occurrence of a phase transition
- VBS order parameter does not prove to be a clear indicator → the intermediate phase contains different types of spin-liquid states



Ground state energy

- Ground state energy levels from 16 up to 25 sites
- In good agreement with earlier studies
- \blacksquare Results with bare FCIQMC algorithm \rightarrow robustness
- Clever basis, importance sampling or initiator approach would improve the efficiency



The phase space average of a quantity A

$$\langle A \rangle = \frac{1}{Z} \sum_{c \in \Omega} A(c) p(c), \qquad Z = \sum_{c \in \Omega} p(c)$$

 \rightarrow but ! in QM finding p(c) is not that easy

Every *D*-dimensional quantum system corresponds to a D + 1-dimensional effective classical system \rightarrow various Quantum-to-classical mappings

Finite-temperature representations

$$\langle A \rangle = \frac{1}{Z} \operatorname{Tr}(A e^{-\beta \hat{H}})$$

Stochastic series expansion (SSE)

Trotter-Suzuki decomposition

Zero-temperature projector representation

$$\langle A \rangle = \frac{1}{Z} \langle \psi_0 | A | \psi_0 \rangle$$

Projector scheme :
$$|\psi_0\rangle \propto \lim_{\tau \to \infty} e^{-\tau H} |\psi_{in}\rangle$$

SSE for
$$Z = \langle \psi_0 | \psi_0 \rangle = \langle \psi_{in} | e^{-2\tau H} | \psi_{in} \rangle$$

Sign problem

- \square p(c) is proportional to the product of Hamiltonian elements
- Sign problem if some of the p(c) < 0
 - can not interpret p(c) as probabilities
 - appears in simulation of fermions or frustrated magnets

"Solution"

Sampling by using |p(c)|

$$Z = \sum_{c} p(c) = \frac{\sum_{c} \operatorname{sign}\{p(c)\}|p(c)|}{\sum_{c} |p(c)|}$$

BUT the mean value of the sign becomes exponentially small

$$\langle s \rangle = \frac{Z}{Z_{|p|}} = e^{-\beta N \Delta}.$$

Exponential growth in the error

$$\frac{\Delta s}{\langle s \rangle} \sim e^{\beta N \Delta f}$$

The same limitation in PMC techniques : an undesired state grows relative to the state of interest

Alexandra Nagy EPFL

