
Dr. Suleyman Demirsoy

HPC Systems FAE

Intel Programmable Solutions Group

Programmable Solutions Group 2

FPGA architecture

High level design flows

Trends

Parallelism

Programmable Solutions Group

Legal Notices and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other
sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit
http://www.intel.com/performance.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For
more complete information visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide
cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel
representative to obtain the latest forecast, schedule, specifications and roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and
uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, including the annual report on Form 10-K.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. The products described may contain
design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data
are accurate.
© 2016 Intel Corporation. Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

3

http://www.intel.com/performance
http://www.intel.com/performance

Programmable Solutions Group

Industry Trends

4

Ever increasing functionality and performance required

Data set sizes and pipelines to move data continue to increase

Struggle to sustain performance trajectory without massive increases in cost, power and
system size

Time to market pressure always increasing

Size and capabilities of FPGAs are growing exponentially

Programmable Solutions Group

Intel Projecting 1/3 Cloud Nodes are FPGA by 2020

5http://tinyurl.com/yd3c5e97

Up to

http://tinyurl.com/nldu4dm

Programmable Solutions Group

CPU Storage
FPGA /

GPU
FPGA

IO

Compute Acceleration

Storage Acceleration
- Cryptography
- Compression
- Indexing

Data Flow Processing
- Inline processing
- Pre-processing
- Pre-filtering
- Exception processing
- Cryptography
- Compression
- IO expansion
- Protocol bridging

FPGA

Control Plane
- Management
- Security
- Protocol bridging

Where Do FPGAs Fit In?

FPGA

7

FPGAs enable solving system level data movement issues

Programmable Solutions Group 9

FPGA Architecture: Fine-grained Massively Parallel

Millions of reconfigurable logic
elements

Thousands of 20Kb memory blocks

Thousands of Variable Precision
DSP blocks

Dozens of High-speed transceivers

Multiple High Speed configurable
Memory Controllers

Multiple ARM© Cores

I/
O

I/O

I/O

I/O

Let’s zoom in

Programmable Solutions Group

FPGA Architecture: Basic Elements

1-bit configurable
operation

Configured to perform any
1-bit operation:

AND, OR, NOT, ADD, SUB

Basic Element

1-bit register
(store result)

10

Programmable Solutions Group 12

FPGA Architecture: Memory Blocks

Memory
Block

20 Kb

addr

data_in

data_out

Can be configured and
grouped using the

interconnect to create
various cache architectures

Programmable Solutions Group 13

FPGA Architecture: Floating Point Mult/Add

data_in

Dedicated floating point
multiply and add blocks

data_out

Programmable Solutions Group 14

FPGA Architecture: Configurable Routing

Blocks are connected into
a custom data-path that
matches your application.

Programmable Solutions Group 15

Incredible numbers

Programmable Solutions Group

Performance in the Data Center

17

Intel® Arria 10: up to
1150K equivalent logic
elements

FPGAsCPUs

Intel® Xeon® processor E7 v4
product family: up to 24
Cores

Intel® Xeon® Phi Processor
Family: up to 72 Cores

Multi-Cores

Towards more a parallelism through spatial computing

Course Grain Parallelism Fine Grain Parallelism

https://mediastream.microsoft.com/events/2016/1609/Ignite/player/keynote-pm.html

https://mediastream.microsoft.com/events/2016/1609/Ignite/player/keynote-pm.html

Programmable Solutions Group

Information Memory Wall

Memory architectures have limited bandwidth, and can’t keep up
with the processor

Computation ILP Wall

Compilers don’t find enough parallelism in a single instruction
stream to keep Von Neuman-based architectures busy

Realization Power Wall

Process scaling trends towards exponentially increasing power
consumption

18

What problem are we solving

Programmable Solutions Group 19

L1, L2, L3 Growing cache sizes to
manage latency

GDDR Higher bus size for
bandwidth and power

QDR Double clock efficient
interleaving of read/write

HMC, HMB Multi-layer cross-switch and
memory control for
bandwidth

Memory wall

https://people.eecs.berkeley.edu/~pattrsn/talks/Cadence.pdf

Programmable Solutions Group 20

Lower V Parallelism

Lower Vt Tri-Gate

Power wall

𝑓
in out

𝑓

𝑁
in out

𝑓

𝑁

𝑓

𝑁

𝑁

𝑷 = 𝑪𝑽𝟐𝒇

𝑃 = 𝑁 ∗ 𝛾𝐶 𝑉 2
𝑓

𝑁

𝑃 = 𝛾2 𝐶𝑉2𝑓
𝛾 ≈ 1.2
 ≈ 0.7
𝑷 ≈ 𝟎. 𝟓𝑪𝑽𝟐𝒇

http://www.intel.com/content/dam/www/public/us/en/documents/bac
kgrounders/standards-22nm-3d-tri-gate-transistors-presentation.pdf

Programmable Solutions Group 21

Implications to HPC Roadmap

https://www.hpcwire.com/2016/06/14/us-carves-path-capable-exascale-computing/

Programmable Solutions Group 22

SIMD Vectorization

Data Parallelism

MIMD Task Parallelism

Compute wall

http://www.ee.nmt.edu/~rison/ee308_spr00/supp/000119/princeton.gif http://images.anandtech.com/doci/9582/SkylakeFalseColor_678x452.jpg

Programmable Solutions Group 23

Parallel Computing

“A form of computation in which many calculations are carried out
simultaneously, operating on the principle that large problems can often be
divided into smaller ones, which are then solved concurrently (in parallel)”

~ Highly Parallel Computing, Amasi/Gottlieb (1989)

Task Parallelism
Multi-Threading (MT)

Data Parallelism
Single Instruction Multiple Data (SIMD)

int main() {
task1(x);
task2(x);
task3(x);
}

int main() {
for (int i=0;i<N;i++) {
task(x[i]);
}
}

Programmable Solutions Group

Challenges in Parallel Programming

24

Finding Parallelism

– What activities can be executed concurrently?
o Is parallelism explicit (programmer specified) or implicit?

Data sharing and synchronization

– What happens if two activities access the same data at the
same time?
o Hardware design implications

 eg. Uniform address spaces, cache coherency

– Is MPI the right solution?

Applications exhibit different behaviors

– Control
o Searching, parsing, etc…

– Data intensive
o Image processing, data mining, etc…

– Compute intensive
o Iterative methods, financial modeling, etc

Programmable Solutions Group

Amdahl’s Law Limitations

25

Not all applications scale linearly

– Speed-up by multiple processors is
limited by the time needed for the
portion that can not be parallelized

0

20

40

60

80

100

120

1 2 4 12 16 24 32

W
a

ll
 c

lo
ck

 t
im

e

Number of processors

80% parallel application

parallel

serial

1.00

1.67

2.50

3.75 4.00
4.29 4.44

0

200

400

600

800

1000

1200

1400

1600

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360

mpi

user

These cores do more work than others

Not all applications load balance across all
CPU cores equally

Programmable Solutions Group

Mapping a Simple Arithmetic expression

26

R0 Load Mem[100]
R1 Load Mem[101]
R2 Load #42
R2 Mul R1, R2
R0 Add R2, R0
Store R0 Mem[100]

High-level code

Mem[100] += 42 * Mem[101]

CPU instructions

C/C++ instruction

Programmable Solutions Group

B

A

A ALU

First let’s take a look at execution on a simple CPU

27

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

Fixed and general
architecture:

- General “cover-all-cases” data-paths
- Fixed data-widths
- Fixed operations

Programmable Solutions Group

B

A

ALU

Looking at a Single Instruction

28

Very inefficient use of hardware!

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

Programmable Solutions Group

Sequential Architecture vs. Dataflow Architecture

Sequential CPU Architecture FPGA Dataflow Architecture

A

AA

AA

A

load load

store

42
R

e

s

o

u

r

c

e

s

Time

29

Programmable Solutions Group

Custom Data-Path on the FPGA Matches Your Algorithm!

30

Build exactly what you need:

Operations

Data widths

Memory size & configuration

Efficiency:

Throughput / Latency / Power

load load

store

42

High-level code

Mem[100] += 42 * Mem[101]

Custom data-path

Programmable Solutions Group

Thread execution can be executed on replicated pipelines in the FPGA
 Throughput = 1 thread per cycle

 Area inefficient

Execution of Threads on FPGA – Naïve Approach

31

t0 t1 t2

Parallel Threads

t3 t4 t5

C
lo

ck
 C

y
cl

e
s

Programmable Solutions Group

Execution of Threads on FPGA

32

t0t1t2

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

Better method involves taking advantage of pipeline parallelism
 Attempt to create a deeply pipelined implementation of kernel

 On each clock cycle, we attempt to send in new thread

Programmable Solutions Group

Execution of Threads on FPGA

33

t1t2

t0
kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

Better method involves taking advantage of pipeline parallelism
 Attempt to create a deeply pipelined implementation of kernel

 On each clock cycle, we attempt to send in new thread

Programmable Solutions Group

Execution of Threads on FPGA

34

t2

t1

t0

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

Better method involves taking advantage of pipeline parallelism
 Attempt to create a deeply pipelined implementation of kernel

 On each clock cycle, we attempt to send in new thread

Programmable Solutions Group

Execution of Threads on FPGA

35

t2

t1

t0

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

Better method involves taking advantage of pipeline parallelism
 Attempt to create a deeply pipelined implementation of kernel

 On each clock cycle, we attempt to send in new thread

Programmable Solutions Group

Execution of Threads on FPGA

36

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

Better method involves taking advantage of pipeline parallelism
 Attempt to create a deeply pipelined implementation of kernel

 On each clock cycle, we attempt to send in new thread

t2

t1

t0

Programmable Solutions Group

Execution of Threads on FPGA

37

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

Better method involves taking advantage of pipeline parallelism
 Attempt to create a deeply pipelined implementation of kernel

 On each clock cycle, we attempt to send in new thread

t2

t1

Programmable Solutions Group

Better method involves taking advantage of pipeline parallelism
 Throughput = 1 thread per cycle

Execution of Threads on FPGA

38

t0

t1
t2

t3

t4

t5

C
lo

ck
 C

y
cl

e
s

kernel void

add(global int* Mem) {

...

Mem[100] += 42*Mem[101];

}

t2

Programmable Solutions Group

High Level Design is the Bridge Between HW & SW

40

100x More Software Engineers than Hardware Engineers

– Companies don’t want to acquire hardware engineers to use FPGAs

o FPGA developers are a niche skillset and limited supply

– A more accessible abstraction of hardware

– Key to wide-spread adoption of FPGA in Datacenter

– Debugging software is much faster than hardware

– Many functions are easier to specify in software than RTL

Simulation of RTL takes thousands times longer than software

Design Exploration is much easier and faster in software

We Need to Raise the Level of Abstraction

– Similar to what assembly programmers did with C over 30 years ago

o (Today) Abstract away FPGA Design with Higher Level Languages

o (Today) Abstract away FPGA Hardware behind Platforms

o (Tomorrow) Leverage Pre-Compiled Libraries as Software Services

Programmable Solutions Group

main(…)

{

for(…)

{

}

41

The Software Programmer’s View

Programmers develop in mature software environments

– Ideas can easily be expressed in languages such as ‘C’
o Typically start with simple sequential program

o Use parallel APIs / language extensions to exploit multi core for additional performance

– Compilation times are almost instantaneous

– Immediate feedback

– Rich debugging tools

main(…)

{

for(…)

{

}

C
o

m
p

il
e

rmain(…)

{

for(…)

{

}

Programmable Solutions Group

Different Solutions for Different Users

42

High Level Design

Compiler

HDL Code,

Qsys

(Schematic)

Altera SDK For

OpenCL

(SW)

Intel® HLS Compiler

(IP)
DSP Builder

(Model)

For Different Users

Key
Technology

Different Objectives and Requirements

Delivery of
Different Front-

Ends

“Hardware”

Designer

“Algorithm”

Designer

“Embedded”

Designer
“Software”

Designer

HDL

Intel® FPGA SDK

For OpenCL

(SW)

“Hardware”

Designer

“Algorithm”

Designer

“Embedded”

Designer
“Software”

Designer

Programmable Solutions Group

Platform

Accelerating HLD Tool Improvements

43

Front End Tools
and Reporting

Compiler
Optimizations

Compiler
Infrastructure

C/C++
Front-End

DSP Builder
Front-End

OpenCL
Front-End

Accelerated
Improvement of

Quality of
Results

Accelerated
support for
advanced

features of our
products, e.g.
Floating-Point

Actionable
feedback and

power user
control

Rapid enablement
of Intel devices
including Stratix
10, Arria 10 and
Stratix 10 ARM

based SoCs

Intel
®

HLS Compiler

Programmable Solutions Group

OpenCL Expanding the User Base

45

ASIC

FPGA
Programmers

Parallel

Programmers

Standard CPU Programmers

OpenCL expands
The number of

application developers

Programmable Solutions Group 46

Heterogeneous Platform Model

OpenCL

Platform

Model

Host

(Compute) Device

Compute Unit

Processing

Element

Host Memory

Global Memory

Example

Platform
x86

PCIe

Programmable Solutions Group

OpenCL

Platform

Model

47

Heterogeneous Platform Model

Example

Platform
x86

PCIe

Device Device

Host

Host Memory

Global Memory

Programmable Solutions Group 48

OpenCL Use Model

Host Code

main() {
read_data(…);
manipulate(…);
clEnqueueWriteBuffer(…);
clEnqueueNDRange(…,sum,…);
clEnqueueReadBuffer(…);
display_result(…);

}

Standard
gcc Compiler

EXE

Host Accelerator

Intel FPGA
Offline

Compiler

AOCX

__kernel void sum
(__global float *a,
__global float *b,
__global float *y)

{
int gid = get_global_id(0);
y[gid] = a[gid] + b[gid];

}

Verilog

OpenCL Accelerator Code

Programmable Solutions Group 51

OpenCL Tool Flow
<kernel filename>.cl

aoc –c <kernel filename>.cl

<kernel filename>.aocx

Generate intermediate
.aoco files

aoc –march=emulator <kernel filename>.cl

Functionally Correct?

No

Yes

aoc –profile <kernel filename>.cl

Performance acceptable?

Syntax, resource estimation and optimization report okay?

Yes

No

No

52

Programmable Solutions Group

Easier to Use and High Performance / Watt

Library Approach

FPGA

CPU

Intel Provided Building Blocks

 Intel® Xeon® processor
library elements

 FPGA intellectual property (IP)

 Intel® Xeon® processor calls
FPGA IP

Data
Analytics

SHIMs to Key Industry Frameworks

Visual
Understanding

Database

Genomics

Networking
(all available as

source code)

Workload

FPGA API

Accelerator Support Software

Intel Software Infrastructure
Accelerator Abstraction Lay (AAL)

Intel Hardware Infrastructure

FPGA IP

User Application

Programmable Solutions Group

Black Scholes Options Pricing

54

Price 100K to 1M options portfolio

 8 Black Scholes Engines, 4 DDR IV interfaces

 5 Inputs, 1 output

 3.2 Billion option/sec

Adding Greeks

 One additional engine per DDR IV

 32% increase in resources

Fin-Lib phase 1

 Demo available in Q4 2016

Models ALMs RAMs DSPs

Black-Scholes wo
Greeks

1% 2% 5%

Black-Scholes with
Greeks

1% 2% 8%

Bachelier 3% 12% 31%

Arria 10
FPGA

DDR IV

DDR IV

D
D

R
 IV

D
D

R
 IV

19GB/s

19GB/s

19GB/s 19GB/s

utilization

Programmable Solutions Group 55

Machine Learning Inference

MKL-DNN

AlexNet, GoogleNet,
Customer-developed

OpenCL

OS + BSP

FPGA + CNN IP

Topology

Framework Intel Caffe

SW Library

Run time libraries

Operating System / Firmware

PCIe Hardware

Deep Learning Accelerator

C
u

st
o

m
e

r
in

te
rf

a
ce

