

FPGA BASED ACCELERATION OF Scientific Workloads - Why? How?

Dr. Suleyman Demirsoy

HPC Systems FAE

Intel Programmable Solutions Group

Trends

FPGA architecture

Parallelism

High level design flows

Legal Notices and Disclaimers

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Statements in this document that refer to Intel's plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in Intel's SEC filings, including the annual report on Form 10-K.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

© 2016 Intel Corporation. Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Industry Trends

Ever increasing functionality and performance required

Data set sizes and pipelines to move data continue to increase

Struggle to sustain performance trajectory without massive increases in cost, power and system size

Time to market pressure always increasing

Size and capabilities of FPGAs are growing exponentially

Intel Projecting 1/3 Cloud Nodes are FPGA by 2020

Cloud Example: Data Center FPGA Acceleration Up to 1/3 of Cloud Service Provider Nodes to Use FPGAs by 2020

Up to 2X performance increase through integration Reduces total cost of ownership (TCO) by using standard server infrastructure Increases flexibility by allowing for rapid implementation of customer IP and algorithms

https://gigaom.com/2015/02/23/microsoft-is-building-fast-low-power-neural-networks-with-fpgas/

Where Do FPGAs Fit In?

FPGAs enable solving system level data movement issues

Prog

FPGA ARCHITECTURE

FPGA Architecture: Fine-grained Massively Parallel

Millions of reconfigurable logic elements

Thousands of 20Kb memory blocks

Thousands of Variable Precision DSP blocks

Dozens of High-speed transceivers

Multiple High Speed configurable Memory Controllers

Multiple ARM© Cores

FPGA Architecture: Basic Elements

FPGA Architecture: Memory Blocks

FPGA Architecture: Configurable Routing

Blocks are connected into a **custom data-path** that matches your application.

Incredible numbers

	Product Line	Arria 10 GX FPGAs ¹						
Resources	Froduct Line	GX 270	GX 320	GX 480	GX 570	GX 660	GX 900	GX 1150
	Part number reference	0AX027	10AX032	10AX048	10AX057	10AX066	10AX090	10AX115
	LEs (K)	270	320	480	570	660	900	1,150
	Adaptive logic modules (ALMs)	01,620	118,730	181,790	217,080	250,540	339,620	427,700
	Registers	406,480	474,920	727,160	868,320	1,002,160	1,358,480	1,708,800
	M20K memory blocks	750	891	1,438	1,800	2,133	2,423	2,713
	M20K memory (Mb)	15	17	28	35	42	47	53
	MLAB memory (Mb)	2.4	2.8	4.3	5.0	5.7	9.2	12.7
	Hardened single-precision floating-point multiplers/adders	830/830	985/985	1,368/1,368	1,523/1,523	1,688/1,688	1,518/1,518	1,518/1,518
	18 x 19 multipliers	1,660	1,970	2,736	3,046	3,376	3,036	3,036
	Peak GMACS	1,826	2,167	3,010	3,351	3,714	3,340	3,340
	GFLOPS	747	887	1,231	1,371	1,519	1,366	1,366
	Global clock networks	32	32	32	32	32	32	32
	Regional clocks	8	8	8	8	16	16	16
	I/O voltage levels supported (V)	1.2, 1.25, 1.35, 1.8, 2.5, 3.02						
11/0 Pins, and Features	VO standards supported	3 V I/O pins only: 3 V LVTTL, 2.5 V CMOS DDR and LVDS I/O pins: POD12, POD10, Differential POD12, Differential POD10, LVDS, RSDS, mini-LVDS, LVPECL [L-125, SSTL-18 (1 and II), SSTL-15 (I and II), SSTL-12, HSTL-18 (I and II), HSTL-15 (I and II), HSTL-12 (I and II), HSUL-12, Differential SSTL-135, Differential SSTL-125, Differential SSTL-12, Differential HSTL-18 (I and II), Differential HSTL-15 (I and II), Differential HSTL-12 (I and II), DIFFERENCENCENCENCENCENCENCENCENCENCENCENCENCE						
Church I	Maximum LVDS channels (1.6 G)	168	168	222	270	270	384	384
Clocks, Marid Archites	Maximum user I/O pins	384	384	492	624	624	768	768
	Transceiver count (17.4 Gbps)	24	24	36	48	48	96	96
	Transceiver count (28.3 Gbps)	-	-	-	-	-	-	-
	PCIe hard IP blocks (Gen3)	2	2	2	2	2	4	4
	Maximum 3 V I/O pins	48	48	48	48	48	-	-
	Memory devices supported	DDR4, DDR3, DDR2, QDR IV, QDR II+, QDR II+ Xtreme, LPDDR3, LPDDR2, RLDRAM 3, RLDRAM II, LLDRAM II, HMC						

15

inte

VARIOUS LEVEL OF PARALLELISM

Performance in the Data Center

< Towards more a parallelism through spatial computing

Intel[®] Xeon[®] processor E7 v4 product family: up to 24 Cores Intel[®] Xeon[®] Phi Processor Family: up to 72 Cores Intel[®] Arria 10: up to 1150K equivalent logic elements

https://mediastream.microsoft.com/events/2016/1609/Ignite/player/keynote-pm.html

What problem are we solving

Information	Memory Wall			
Entransministration of the second sec	Memory architectures have limited bandwidth, and can't keep up with the processor			
Computation	ILP Wall			
	Compilers don't find enough parallelism in a single instruction stream to keep Von Neuman-based architectures busy			
Realization	Power Wall			
Gate Sources Drains	Process scaling trends towards exponentially increasing power consumption			

Memory wall

L1, L2, L3	Growing cache sizes to manage latency
GDDR	Higher bus size for bandwidth and power
QDR	Double clock efficient interleaving of read/write
HMC, HMB	Multi-layer cross-switch and memory control for bandwidth

https://people.eecs.berkeley.edu/~pattrsn/talks/Cadence.pdf

Power wall

$$P = CV^2 f$$

Lower V	Parallelism
Lower Vt	Tri-Gate

http://www.intel.com/content/dam/www/public/us/en/documents/backgrounders/standards-22nm-3d-tri-gate-transistors-presentation.pdf

Implications to HPC Roadmap

https://www.hpcwire.com/2016/06/14/us-carves-path-capable-exascale-computing/

Compute wall

http://images.anandtech.com/doci/9582/SkylakeFalseColor_678x452.jpg

http://www.ee.nmt.edu/~rison/ee308_spr00/supp/000119/princeton.gif

Parallel Computing

"A form of computation in which many calculations are carried out simultaneously, operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently (in parallel)" ~ Highly Parallel Computing, Amasi/Gottlieb (1989)

Task Parallelism

Multi-Threading (MT)

Data Parallelism

Single Instruction Multiple Data (SIMD)

int main() { for (int i=0;i<N;i++) {</pre> task(x[i]);

Challenges in Parallel Programming

Finding Parallelism

- What activities can be executed concurrently?
 - Is parallelism explicit (programmer specified) or implicit?

Data sharing and synchronization

- What happens if two activities access the same data at the same time?
 - Hardware design implications
 - eg. Uniform address spaces, cache coherency
- Is MPI the right solution?

Applications exhibit different behaviors

- Control
 - Searching, parsing, etc...
- Data intensive
 - o Image processing, data mining, etc...
- Compute intensive
 - \circ Iterative methods, financial modeling, etc

Amdahl's Law Limitations

Not all applications scale linearly

 Speed-up by multiple processors is limited by the time needed for the portion that can not be parallelized

Not all applications load balance across all CPU cores equally

Programmable Solutions Group

Mapping a Simple Arithmetic expression

C/C++ instruction

Mem[100] += 42 * Mem[101]

CPU instructions

R0 \leftarrow Load Mem[100] R1 \leftarrow Load Mem[101] R2 \leftarrow Load #42 R2 \leftarrow Mul R1, R2 R0 \leftarrow Add R2, R0 Store R0 \rightarrow Mem[100]

First let's take a look at execution on a simple CPU

Very inefficient use of hardware!

Sequential Architecture vs. Dataflow Architecture

Sequential CPU Architecture

FPGA Dataflow Architecture

Custom Data-Path on the FPGA Matches Your Algorithm!

High-level code

Mem[100] += 42 * Mem[101]

Custom data-path

Build exactly what you need: Operations Data widths Memory size & configuration

Efficiency: Throughput / Latency / Power

Execution of Threads on FPGA – Naïve Approach

Thread execution can be executed on *replicated* pipelines in the FPGA

- Throughput = 1 thread per cycle
- Area inefficient

Programmable Solutions Group

- Setter method involves taking advantage of *pipeline parallelism*
 - Attempt to create a deeply pipelined implementation of kernel
 - On each clock cycle, we attempt to send in new thread

- Setter method involves taking advantage of *pipeline parallelism*
 - Attempt to create a deeply pipelined implementation of kernel
 - On each clock cycle, we attempt to send in new thread

- Setter method involves taking advantage of *pipeline parallelism*
 - Attempt to create a deeply pipelined implementation of kernel
 - On each clock cycle, we attempt to send in new thread

- Setter method involves taking advantage of *pipeline parallelism*
 - Attempt to create a deeply pipelined implementation of kernel
 - On each clock cycle, we attempt to send in new thread

- Setter method involves taking advantage of *pipeline parallelism*
 - Attempt to create a deeply pipelined implementation of kernel
 - On each clock cycle, we attempt to send in new thread

- Setter method involves taking advantage of *pipeline parallelism*
 - Attempt to create a deeply pipelined implementation of kernel
 - On each clock cycle, we attempt to send in new thread

- Setter method involves taking advantage of *pipeline parallelism*
 - Throughput = 1 thread per cycle

HIGH LEVEL TOOL FLOWS

High Level Design is the Bridge Between HW & SW

100x More Software Engineers than Hardware Engineers

- Companies don't want to acquire hardware engineers to use FPGAs
 - FPGA developers are a niche skillset and limited supply
- A more accessible abstraction of hardware
- Key to wide-spread adoption of FPGA in Datacenter
- Debugging software is much faster than hardware
- Many functions are easier to specify in software than RTL

Simulation of RTL takes thousands times longer than software

Design Exploration is much easier and faster in software

We Need to Raise the Level of Abstraction

- Similar to what assembly programmers did with C over 30 years ago
 - (Today) Abstract away FPGA Design with Higher Level Languages
 - o (Today) Abstract away FPGA Hardware behind Platforms
 - (Tomorrow) Leverage Pre-Compiled Libraries as Software Services

The Software Programmer's View

Programmers develop in mature software environments

- Ideas can easily be expressed in languages such as 'C'
 - Typically start with simple sequential program
 - o Use parallel APIs / language extensions to exploit multi core for additional performance
- Compilation times are almost instantaneous
- Immediate feedback
- Rich debugging tools

Different Solutions for Different Users

Different Objectives and Requirements

Accelerating HLD Tool Improvements

OpenCL Expanding the User Base

Heterogeneous Platform Model

intel

Heterogeneous Platform Model

Programmable Solutions Group

OpenCL Use Model

OpenCL Tool Flow

LIBRARIES

Library Approach

Intel Provided Building Blocks

- Intel[®] Xeon[®] processor library elements
- FPGA intellectual property (IP)
- Intel[®] Xeon[®] processor calls FPGA IP

Easier to Use and High Performance / Watt

Black Scholes Options Pricing

Price 100K to 1M options portfolio

- 8 Black Scholes Engines, 4 DDR IV interfaces
- 5 Inputs, 1 output
- 3.2 Billion option/sec

Adding Greeks

- One additional engine per DDR IV
- 32% increase in resources

Fin-Lib phase 1

Demo available in Q4 2016

Models	ALMs	RAMs	DSPs
Black-Scholes wo Greeks	1%	2%	5%
Black-Scholes with Greeks	1%	2%	8%
Bachelier	3%	12%	31%

Machine Learning Inference

