Nonextensive statistical mechanics: Applications to high energy physics

Constantino Tsallis1,2 a

1 Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems
Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ, Brazil
2 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

e-mail: tsallis@cbpf.br

Abstract. Nonextensive statistical mechanics was proposed in 1988 on the basis of the nonadditive entropy $S_q = k[1 - \sum_i p_i^q]/(q - 1)$ $(q \in \mathbb{R})$ which generalizes that of Boltzmann-Gibbs $S_{BG} = S_1 = -k \sum_i p_i \ln p_i$. This theory extends the applicability of standard statistical mechanics in order to also cover a wide class of anomalous systems which violate usual requirements such as ergodicity. Along the last two decades, a variety of applications have emerged in natural, artificial and social systems, including high energy phenomena. A brief review of the latter will be presented here, emphasizing some open issues.

1 Introduction

Standard statistical mechanics is based on the Boltzmann-Gibbs (BG) entropy $S_{BG} = -k \sum_i p_i \ln p_i$ $(\sum_i p_i = 1)$, where W is the number of microscopic configurations of the system. This extremely powerful theory — one of the pillars of contemporary physics — has exhibited very many successes along 140 years, in particular through its celebrated distribution for thermal equilibrium $p_i \propto e^{-\beta E_i}$, E_i being the energy of the corresponding microstate. However, as any other human intellectual construct, it has a restricted domain of validity. For nonlinear dynamical many-body systems the usual requirement is ergodicity, which is guaranteed by strong chaos (i.e., by a positive maximal Lyapunov exponent for classical systems). For nonergodic systems (typically for systems whose maximal Lyapunov exponent vanishes), which is quite frequently the case of the so-called complex systems, there is no general reason for legitimately using the BG theory. For (some of) such anomalous systems, a generalization of the BG theory has been proposed in 1988 [1]. It is frequently referred to as nonextensive statistical mechanics [2–4] because the total energy of such systems typically is nonextensive, i.e., not proportional to the total number of elements of the system. This generalized theory is based on the entropy

$$S_q = k \frac{1 - \sum_i p_i^q}{q - 1} \quad (q \in \mathbb{R}; \ S_1 = S_{BG})$$

(1)

which exhibits that, in contrast with S_{BG} which is additive, the entropy S_q is nonadditive for $q \neq 1$. This nonadditivity will in fact enable it to be extensive (i.e., proportional to the number of elements of the system) for various classes of systems (see for instance [5,6]).

2 Connection to Thermodynamics

To generalize BG statistical mechanics for the canonical ensemble (from [7]), we optimize S_q with the constraints

$$\sum_{i=1}^{W} p_i = 1 \quad (3)$$

and

$$\sum_{i=1}^{W} P_i E_i = U_q, \quad (4)$$

where

$$P_i \equiv \frac{p_i^q}{\sum_{j=1}^{W} p_j^q} \left(\sum_{i=1}^{W} P_i = 1 \right) \quad (5)$$

is the so-called escort distribution [8]. It follows that $p_i = \frac{P_i}{\sum_{j=1}^{W} P_j}$. There are various converging reasons for being appropriate to impose the energy constraint with the $\{P_i\}$ instead of with the original $\{p_i\}$. The full discussion of this delicate point is beyond the present scope. However, some of these intertwined reasons are explored in [2]. By imposing Eq. (4), we follow [7], which in turn reformulates the results presented in [1,9]. The passage from one to the other of the various existing formulations of the above optimization problem are discussed in detail in [7,10].

The entropy optimization yields, for the stationary state,

$$p_i = \frac{e^{-\beta_i (E_i - U_q)}}{Z_q}, \quad (6)$$

where $Z_q = \sum_{i=1}^{W} \frac{p_i^q}{\sum_{j=1}^{W} p_j^q}$.

\end{document}
with
\[\beta_q \equiv \frac{\beta}{\sum_{i=1}^{w} F_q} , \]
and
\[\tilde{Z}_q \equiv \sum_{i=1}^{w} e_q^{-E_i_q U_q} , \]
\[\beta_q \equiv \frac{\beta}{1 + (1 - q) \beta_q U_q} . \]
\[\beta \text{ being the Lagrange parameter associated with the constraint (4). Eq. (6) makes explicit that the probability distribution is, for fixed } \beta_q, \text{ invariant with regard to the arbitrary choice of the zero of energies. The stationary state (or (meta)equilibrium) distribution (6) can be rewritten as follows:} \]
\[p_i = \frac{e_q^{-E_i_q}}{Z_q} , \]
with
\[Z_q' \equiv \sum_{i=1}^{w} e_q^{-E_i_q} , \]
and
\[\beta_q \equiv \beta \]
\[\text{The form (9) is particularly convenient for many applications where comparison with experimental or computational data is involved. Also, it makes clear that } p_i \text{ asymptotically decays like } 1/E^{1/(q-1)} \text{ for } q > 1, \text{ and has a cutoff for } q < 1, \text{ instead of the exponential decay with } E_i \text{ for } q = 1. \]

The connection to thermodynamics is established in what follows. It can be proved that
\[\frac{1}{T} = \frac{\partial S_q}{\partial U_q} , \]
with \(T \equiv 1/(k \beta) \). Also, we prove, for the free energy,
\[F_q \equiv U_q - T S_q = -\frac{1}{\beta} \ln_q Z_q , \]
where
\[\ln_q Z_q = \ln_q Z_q - \beta U_q . \]
This relation takes into account the trivial fact that, in contrast with what is usually done in BG statistics, the energies \(E_i \) are here referred to \(U_q \) in (6). It can also be proved
\[U_q = -\frac{\partial}{\partial \beta} \ln_q Z_q , \]
as well as relations such as
\[C_q \equiv T \frac{\partial S_q}{\partial T} = \frac{\partial U_q}{\partial T} = -T \frac{\partial^2 F_q}{\partial T^2} . \]
In fact, the entire Legendre transformation structure of thermodynamics is \(q \)-invariant, which is both remarkable and welcome.

3 Applications

3.1 In diverse systems

The nonadditive entropy \(S_q \) and its associated nonextensive statistical mechanics have been applied to a wide variety of natural, artificial and social systems. Among others we may mention (i) The velocity distribution of (cells of) \textit{Hydra viridissima} follows a \(q = 3/2 \) probability distribution function (PDF) [11]; (ii) The velocity distribution of (cells of) \textit{Dictyostelium discoideum} follows a \(q = 5/3 \) PDF in the vegetative state and a \(q = 2 \) PDF in the starved state [12]; (iii) The velocity distribution in defect turbulence [13]; (iv) The velocity distribution of cold atoms in a dissipative optical lattice [14]; (v) The velocity distribution during silo drainage [15,16]; (vi) The velocity distribution in a driven-dissipative 2D dusty plasma, with \(q = 1.08 \pm 0.01 \) and \(q = 1.05 \pm 0.01 \) at temperatures of 30000 \(K \) and 61000 \(K \) respectively [17]; (vii) The spatial (Monte Carlo) distributions of a trapped \(^{136}Ba^+ \) ion cooled by various classical buffer gases at 300 \(K \) [18]; (viii) The distributions of price returns and stock volumes at the stock exchange, as well as the volatility smile [19–22]; (ix) Biological evolution [23]; (x) The distributions of returns in the Ehrenfest’s dog-flea model [24,25]; (xi) The distributions of returns in the coherent noise model [26]; (xii) The distributions of returns of the avalanche sizes in the self-organized critical Olami-Feder-Christensen model, as well as in real earthquakes [27]; (xiii) The distributions of angles in the HMF model [28]; (xiv) Turbulence in electron plasma [29]; (xv) The relaxation in various paradigmatic spin-glass substances through neutron spin echo experiments [30]; (xvi) Various properties directly related with the time dependence of the width of the ozone layer around the Earth [31]; (xvii) Various properties for conservative and dissipative nonlinear dynamical systems [32–41]; (xviii) The degree distribution of (asymptotically) scale-free networks [42,43]; (xix) Tissue radiation response [44]; (xx) Overdamped motion of interacting particles [45]; (xxi) Rotational population in molecular spectra in plasmas [46]. The systematic study of metastable or long-living states in long-range versions of magnetic models such as the Ising [47] and Heisenberg [48] ones, or in hydrogen-like atoms [49–51] might provide further illustrations.

3.2 In high energy physics

Connections of nonextensive statistics with a specific area of solar physics, astrophysics, high energy physics, and related areas, were pioneered by Quarati and collaborators (see [52], among others), who advanced the possibility of this theory being useful in the discussion of the flux of solar neutrinos. A few years later, it was realized that the transverse momenta distribution of the hadronic jets resulting from electron-positron annihilation are well described by distributions associated with \(q \)-exponentials [53,54]; see Figs. 1 and 2. The energy distribution of cosmic rays has been satisfactorily fitted in [55,56] with distributions related to \(q \)-exponentials: see Fig. 3. The distributions of returns of magnetic field fluctuations in the solar
wind plasma as observed in data from Voyager 1 [57] and from Voyager 2 [58] has provided the values associated with the so called \(q \)-triplet: see Figs. 4 e 5. Similar results have been obtained in the study of interstellar turbulence [59] (see Figs. 6 and 7), in X-ray-emitting binary systems [60] (see Fig. 8), and in the distribution of stellar rotational velocities in the Pleiades [61].

It is important to address here the fact that the distribution of transverse momenta in high-energy collisions of proton-proton, and heavy nuclei (e.g., Pb-Pb and Au-Au) have received and are receiving great attention [62–68]: see illustrative examples in Figs. 9-15. Several such data have been summarized in [69]: see Fig. 16. We realize that for such collisions the typical values of \(q \) are usually close to 1.10, apparently never above say 1.20-1.25. It remains as a challenging problem to precisely understand why (Is it a hadronization of quark matter in a sort of metastable state before attaining ergodicity?). In any case, it was shown in [71] that QCD calculations and \(q \)-statistical calculations can be consistent for \(q \approx 1.1 \): see Fig. 17.

Acknowledgments

I gratefully acknowledge wonderful hospitality received in Budapest at the occasion of the HCBM meeting, very especially from Prof. T.S. Biro. Naturally, the authors of the various figures that I have reproduced in the present brief review are acknowledged as well.

Fig. 1. Distributions of transverse momenta for four typical values of the collision energy. See details in [53].

Fig. 2. Dependence of the index \(q \) (a) and the temperature \(T_0 \) (b) on the collision energies of Fig. 3. The particular case \(q = 1 \) corresponds to the Hagedorn 1965 theory. It is advanced in [54] the possibility that \(q \) approaches the value 11/9 in the \(E \rightarrow \infty \) limit. See details in [53].

Fig. 3. Flux of cosmic rays. Curiously enough, the upper value of the index \(q \) is very close to 11/9. See details in [55,56].

References

4. A regularly updated bibliography can be seen at http://tsallis.cat.cbpf.br/bibliography.html

5. F. Caruso and C. Tsallis, *Nonadditive entropy reconciles the area law in quantum systems with classical
Fig. 4. The q-triplet as obtained from data of the Voyager 1. See details in [57].

Fig. 5. Distributions from which q_{stat} is extracted, from data of the Voyager 2. See details in [58].

Fig. 6. Distributions of column density fluctuations for different spatial separations. See details in [59].

Fig. 7. Values of the index q_{stat} corresponding to Fig. 6. See details in [59].

J.-Special Topics 143 (2007).
Fig. 12. The index q (top) and the temperature (bottom) extracted from hadronic spectra assuming quark coalescence at a sudden hadron formation. See details in [63].

37. E. Mayoral and A. Robledo, Tsallis’ q index and Mori’s q phase transitions at edge of chaos, Phys. Rev. E 72, 026209 (2005).

Fig. 13. Transverse momenta distributions of charged hadrons in pp collisions, as measured by the CMS Collaboration at LHC, corresponding to 0.9, 2.36 and 7 TeV. At these energies it has been obtained $(q, T) = (1.13, 0.13 \text{ GeV}), (1.15, 0.14 \text{ GeV}), (1.15, 0.145 \text{ GeV})$ respectively. See details in [64, 65].

Fig. 14. Transverse momenta distributions of various hadrons in pp collisions, as measured by the PHENIX Collaboration, corresponding to 200 GeV. At this energy it has been obtained $q \simeq 1.10$. See details in [67].
Fig. 15. Transverse momenta distributions of charged hadrons in pp and heavy ion collisions, as measured in Brookhaven. See details in [68].

Fig. 16. Index q obtained at various energies. See details in [69]. The black dots indicate recent CMS results. The red dot indicates the value obtained in [70].

Fig. 17. Comparison of QCD diffusion calculation with its corresponding within q-statistics: they are consistent for $q = 1.11$. See details in [71].

51. N.M. Oliveira-Neto, E.M.F. Curado, F.D. Nobre and M.A. Rego-Monteiro, A simple model to describe the low-temperature behaviour of some atoms and molecules: An application to the hydrogen atom, J.
64. V. Khachatryan et al (CMS Collaboration), Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at $\sqrt{s} = 0.9$ and 2.36 TeV, J. High Energy Phys. 02, 041 (2010).