Filamentation of ultrashort laser pulses

J. Kasparian Group of Applied Physics – University of Geneva

Budapest, April 2016

Outline

- Laser filamentation
- Pulse design by back-propagation
- Filamentation in Rb vapor?
- Conclusion and outlook

Self-guided propagation of ultrashort pulses

Filament: $\Phi = 100 \,\mu\text{m}, L > 100 \,\text{m}, I = 10^{14} \,\text{W/cm}^2, \rho = 10^{15} \,\text{cm}^{-3}$

Mechanism: PRL 104, 103903 (2010); Review: RPP 70, 1633 (2007)

TÉ DES SCIENCES

High power: multiple filamentation

Each filament retains « normal » filaments properties. $\Phi = 100 \ \mu m, L > 100 \ m, I = 10^{14} \ W/cm^2, \rho = 10^{15} \ cm^{-3}$

Mechanism: PRL 104, 103903 (2010); Review: RPP 70, 1633 (2007)

Self-phase modulation

Kerr : $n = n_0 + n_2 I(x, t)$

$$\omega(t) = \frac{d\Phi(t)}{dt}$$
$$= \omega_0 - \frac{n_2 \omega_0}{c} z \frac{dI(t)}{dt}$$

/ \

White-light generation

Ultrashort laser filaments

Non-linear propagation in air : self-guiding

Long distance propagation

 Propagation in perturbed atmosphere: « cloud-safe » laser Turbulent atmosphere Fog, rain, Reduced pressure

 Continuous plasma channel φ = 100 μm Weakly ionised, Conducting: 1 MΩ/m, 10-100 filaments in beam

 Continuous plasma channel Efficient multiphoton photochemistry in plasma: condensation
 Promizing candidates for atmospheric applications Reviews : Science 301, 61 (2003) ; Opt. Express 16, 466 (2008)

Back-propagation and pulse design

- Filaments deliver high intensity beyond diffraction limit
- Selective remote sensing: pulse shaping
- Filament : attractor (intensity clamping, beam diameter...)
- Beam scrambling

TÉ DES SCIENCES

• Design input pulse for delivering specific shape remotely?

Inversibility of equations: *z* -> -*z*

N. Berti et al., Optics Express 22, 21061 (2014)

« Intelligent design » of pulses

N. Berti et al., PRA 91, 063833 (2015)

« Intelligent design » of triple pulse

N. Berti et al., PRA 91, 063833 (2015)

FACUL

TÉ DES SCIENCES

010101

Conclusion: Back-propagation & pulse design

- Filaments can be numerically back-propagated
- Pulse design for delivering high-intensity with predefined pulse
- Filamentation & desired shape: needs hybridization

Filamentation in Rb vapor

A new regime

Filamentation in Rb

	Air	Rb
Ionization potential	Oxygen : 13.6 eV 9 photons	4.2 eV 3 photons
Losses	Ionization (weak)	lonization (strong) + D2 line : 852 nm
Dispersion	Weak	Strong (Kramers-Kronig)
Non-linearity	Constant	Dispersive (non-linear KK)

Propagation equation: NLSE

Conclusion: Filamentation in Rb

- Same formalism
- More ionization, more losses
- Dispersion of the non-linearity

Conclusion and outlook

- Filamentation offers rich physics
- Homogeneously high intensities
- Simulate... and compare with experiments

Acknowledgements

Dompter la foudre

Geneva: W. Ettoumi, N. Berti, M. Moret, J. Kasparian, J.-P. Wolf Munich: J. Moody, P. Muggli,

must

erc

www.unige.ch/se