Ab initio Studies of Rubidium Ionisation Processes

Mihály András Pocsai^{1,2}, Imre Ferenc Barna¹

¹Wigner Research Centre of the H.A.S. ²University of Pécs, Faculty of Sciences, Department of Physics

> 8th of April, 2016 Wigner/MPP AWAKE Workshop Budapest, Wigner RCP

2 Results and Further Plans

3 REFERENCES

M.A. Pocsai, I.F. Barna (Wigner/UP)

Rubidium ionisation

< 同 > < 三 > < 三

OUTLINE

1 OVERVIEW OF THE APPLIED THEORY

2 Results and Further Plans

3 REFERENCES

M.A. Pocsai, I.F. Barna (Wigner/UP)

< ロ > < 同 > < 回 > < 回 >

Photoionisation processes are studied via *ab initio* calculations.

One active electron approach has been applied.

The Hamilton operator has the form of

$$H = H_{Rb} + V_I \tag{1}$$

Hamilton operator of the Rb atom [1]:

$$H_{Rb} = -\frac{1}{2}\nabla^2 - \frac{1}{r}(1 - be^{-dr})$$
(2)

with b = 4.5 and d = 1.09993.

The interaction operator [2]:

$$V_{I} = -\frac{1}{2}\Omega_{kj}(t)\exp\left[i\varepsilon_{kj}(t)t\right]$$
(3)

with the Rabi frequency being:

$$\Omega_{kj}(t) = d_{kj}A(t) \tag{4}$$

with d_{kj} being the dipole matrix element between the $|k\rangle$ and $|j\rangle$ states, A(t) amplitude of the electromagnetic field. The EM field may have the following type:

- Planewave pulse with sin² temporal envelope
- Gaussian beam [3]
- Maxwell–Gaussian beam [4]

• = • < =</p>

FIGURE : Graphical overview of the spectrum of the Rubidium atom and ion.

M.A. Pocsai, I.F. Barna (Wigner/UP)

(ロ) (同) (E) (E) (E)

The bound and the continuum states of the valence electron are described with Slater-type orbitals and Coulomb wavepackets [5], respectively:

$$\chi_{n,l,m,\kappa}(\vec{r}) = C(n,\kappa)r^{n-1}e^{-\kappa r}Y_{l,m}(\theta,\varphi)$$
(5)

$$\varphi_{k,l,m,\tilde{Z}}(\vec{r}) = N(k,\Delta k) \int_{k-\Delta k/2}^{k+\Delta k/2} F_{l,\tilde{Z}}(k',r) dk' Y_{l,m}(\theta,\varphi)$$
(6)

$$F_{l,\tilde{Z}}(k,r) = \sqrt{\frac{2k}{\pi}} \exp\left(\frac{\pi\tilde{Z}}{2k}\right) \frac{(2kr)^{l}}{(2l+1)!} \exp\left(-ikr\right) \left| \Gamma(l+1-i\tilde{Z}/k) \right| \times {}_{1}F_{1}(1+l+i\tilde{Z}/k,2l+2,2ikr)$$

M.A. Pocsai, I.F. Barna (Wigner/UP)

< ロ > < 同 > < 回 > < 回 > < 回 > <

(7)

The variation principle yields the spectrum of the bound states. Since the Slater-functions are not orthogonal to each other, one has to solve a generalized eigenvalue problem:

$$\mathbf{Hc} = E\mathbf{Sc} \tag{8}$$

with

$$H_{ij} = \left\langle \psi_i \left| \hat{H} \right| \psi_j \right\rangle \tag{9}$$

and

$$\mathbf{S}_{ij} = \left\langle \psi_i | \psi_j \right\rangle \tag{10}$$

The variational parameters are the κ screening factors.

The energy and width of the Coulomb wavepackets depends on the integration limits. Since the Slater–packet overlap is nonzero—it has an order of magnitude of 10^{-2} —the presence of the packets slightly shifts the energy of the bound states.

< ロ > < 同 > < 回 > < 回 > < 回 > <

We apply the following Ansatz for the time-dependent Schrödinger equation:

$$\Psi(\vec{r},t) = \sum_{j=1}^{N} a_j(t) \Phi_j(\vec{r}) e^{-iE_j t}$$
(11)

We get the following system of equations for the $a_i(t)$ coefficients:

$$\frac{\mathrm{d}a_k(t)}{\mathrm{d}t} = -i\sum_{j=1}^N V_{kj}(t)e^{-i(E_j - E_k)t}a_j(t) \quad (k = 1...N)$$
(12)

with

$$V_{kj}(t) = \langle \Phi_k | \hat{V}(t) | \Phi_j \rangle$$
(13)

being the couplings matrix, $\Phi_k(\vec{r})$ is either a Slater-type orbital or a Coulomb wavepacket.

Initial conditions:

$$a_k (t \to -\infty) = \begin{cases} 1 & k = 1 \\ 0 & k \neq 1 \end{cases}$$
(14)

Final state probabilities:

$$P_k(t \to \infty) = |a_k(t \to \infty)|^2 \tag{15}$$

Electron density after the ionisation has happened:

$$\varrho(\vec{r}) = \left\langle \Psi(\vec{r}', t \to \infty) \left| \delta(\vec{r}) \right| \Psi(\vec{r}', t \to \infty) \right\rangle$$
(16)

The ionisation caused by a 400 GeV proton beam originates in photoionisation via the Weizsäcker-Williams method.

M.A. Pocsai, I.F. Barna (Wigner/UP)

< A >

OUTLINE

OVERVIEW OF THE APPLIED THEORY

2 Results and Further Plans

3 References

M.A. Pocsai, I.F. Barna (Wigner/UP)

FIGURE : Slater-type orbital corresponding to the 4*d* state.

< E

FIGURE : *s* wavefunction of the electron after absorbing a photon.

The Coulomb packets have been constructed according to

$$E_{\gamma}(800nm) = 0.0570 \,\mathrm{a.u.}$$
 (17)

$$E_{7s} = -0.0315 \,\mathrm{a.u.}$$
 (18)

$$\Delta E = E_{\gamma}/4 \tag{19}$$

$$E_{max} = E_{7s} + 3E_{\gamma} \tag{20}$$

The total energy range given above can be split into ten ΔE width parts. For every part there exists a package with *s*, *p*, *d* and *f* azimuthal quantum number, respectively (40 total).

κ [1]	E _{exp} [a.u.]	E _{opt}	E _{calc} [a.u.]
1.35789	-0.153507	-0.144606	-0.148578
0.747335	-0.0617762	-0.0590814	-0.0649904
0.162072	-0.0336229	-0.0317344	-0.0370498
0.285925	-0.0211596	-0.0196661	-0.0236445
0.563253	-0.0145428	-0.0132598	-0.0161758
0.0995939	-0.0106093	-0.0093473	-0.011617
0.177069	-0.00808107	-0.00685427	-0.00856655
0.192805	-0.00636018	-0.00463121	-0.00653549

TABLE : The spectrum of the bound states: E_{ns} . $n = 5 \dots 13$

・ロト ・同ト ・ヨト ・ヨト

э

κ [1]	E _{exp} [a.u.]	E _{opt}	E _{calc} [a.u.]
0.934074	-0.0961927	-0.0961927	-0.102753
0.0606182	-0.0454528	-0.0454529	-0.0500378
0.593825	-0.0266809	-0.0266805	-0.0293907
0.360146	-0.0175686	-0.0175692	-0.0191912
0.257965	-0.0124475	-0.0124474	-0.0134602
0.10425	-0.00928107	-0.00928073	-0.00994177
0.117591	-0.00718653	-0.00718617	-0.00763469
0.0654625	-0.00572873	-0.00572882	-0.00604301
0.111322	-0.0046738	-0.004674	-0.00489973
0.0972476	-0.0038856	-0.00388597	-0.00405129
0.0594662	-0.00328125	-0.0032817	-0.00340454
0.091899	-0.00280771	-0.00280802	-0.00290064
0.0660554	-0.00242976	-0.00242971	-0.00250062
0.0886535	-0.00212316	-0.00212282	-0.00217684
0.0606625	-0.0018712	-0.00187064	-0.00190818

M.A. Pocsai, I.F. Barna (Wigner/UP)

æ.

κ[1]	E _{exp} [a.u.]	E _{opt}	E _{calc} [a.u.]
0.465587	-0.0653178	-0.0543145	-0.0544901
0.260371	-0.0364064	-0.0306089	-0.0307153
0.142432	-0.0227985	-0.0196441	-0.019709
0.231017	-0.0155403	-0.0136696	-0.0137109
0.12431	-0.0112513	-0.0100561	-0.0100841
0.144521	-0.00851559	-0.00770051	-0.0077216
0.107533	-0.00666683	-0.00606339	-0.00608392

TABLE : The spectrum of the bound states: E_{nd} . n = 4...10

<ロ> (日) (日) (日) (日) (日)

э

κ [1]	E _{exp} [a.u.]	E _{opt}	E _{calc} [a.u.]
0.247252	-0.0314329	-0.0312247	-0.031225
0.164201	-0.0201073	-0.019978	-0.0199783
0.115393	-0.0139554	-0.0138729	-0.0138734
0.108716	-0.0102476	-0.0101934	-0.0101937
0.187485	-0.00784234	-0.007803	-0.00780359

TABLE : The spectrum of the bound states: E_{nf} . $n = 4 \dots 8$

M.A. Pocsai, I.F. Barna (Wigner/UP)

э

・ロト ・同ト ・ヨト ・ヨト

lonisation cross-sections as a function of laser intensity: approx. 0.1 Mb-10 - 15 Mb, e.g. [6] Estimation of the collision-ionisation cross-section (proton beam):

$$\lg\left(rac{\sigma}{Z_{
ho}}
ight)=3.86-0.87\lg\left(rac{v_{
ho}^2}{Z_{
ho}}
ight)$$

(21)

 $\sigma \approx 35\,\mathrm{Mb}$

OUTLINE

OVERVIEW OF THE APPLIED THEORY

2 Results and Further Plans

3 REFERENCES

M.A. Pocsai, I.F. Barna (Wigner/UP)

・ 同 ト ・ ヨ ト ・ ヨ ト

M. Z. Milošević, N. S. Simonović, Phys. Rev. A **91**, 023424 (2015)
 M. Aladi *et. al:* Nucl. Intstr. Meth. Phys. Res. A **740**, 203–207 (2014)
 F. Sohbatzadeh *et. al:* Phys. Plasmas **13**, 123108 (2006)
 P. Varga, P. Török: Opt. Commun. **152**, 108–118 (1998)
 I. F. Barna *et. al:* Eur. Phys. J. D **25**, 239–246 (2003)
 R. V. Ambartzumyan *et. al:* Zh. Eksp. Theor. Fiz. **70**, 1660–1673 (1976)

Thank you for your attention!

M.A. Pocsai, I.F. Barna (Wigner/UP)

Rubidium ionisation

Budapest, 8th of April, 2016 21 / 21