
GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Lectures on Modern Scientific Programming
Wigner RCP

23-25 November 2015

Compilers and intrinsics



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Compilers

We do not write assembly instructions because:

• It simply does not scale
Large problems require proportionally larger work...

• Not safe, hard to comprehend, understand, maintain

• Not portable
between architectures

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

2



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Compilers

Instead:

we use higher-level languages and a compiler, that translates 
this language to assembly instructions / binary

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

3



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Compilers

„This picture is well-known in the compiler field

The dragon is the problem of compiling, the

knight uses algorithms and data structures to

‚slay the dragon’ ”

„Dragons have connotations of power, speed 

and intelligence, and can also be sleek, 

elegant, and modular (err, maybe not).”

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

4



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Compilers

Compilers are a complex piece of software
and to achieve performance and precision we should have an 
idea how they work

Source

Code
Lexical

analyzer

Syntactic

analyzer

Semantic

analyzer

Intermediate

code

generator

Optimizer

Final

code

generator

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

5



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Compilers

Compiler development is complicated, but every day a new 
programming language is invented

How is it possible?

Modularity!

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

6



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Compilers

High-level programming languages abstract from hardware 
details
register count, instruction set, etc.

So a language is just a collection of syntax + semantics

Source

Code
Lexical

analyzer

Syntactic

analyzer

Semantic

analyzer

Intermediate

code

generator

Optimizer

Final

code

generator

They just need to change this

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

7



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Compilers

This means that the optimizer can be the same for multiple 
languages

And for multiple architectures!

Source 

Code
Lexical 

analyzer

Syntactic 

analyzer

Semantic 

analyzer

Intermediate

code

generator

Optimizer

Final

code

generator

Language specific front-end

Architecture specific back-end

Compiler internal

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

8



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Compilers

This means that the level of optimization

(i.e. how efficient code is generated)

only differs between languages because of language 
expressivity!

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

9



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Optimizations

Some typical optimizations that the compilers carries out:

• Loop optimizations
induction analysis, fission, fusion, inversion, interchange, invariant extraction, nest 
optimization, reversal, unrolling, splitting

• Data-flow optimizations
common subexpression elimination, constant evaluation, reordering of load/store ops

• Algebraic / Floating-Point optimizations
add, mul associativity, distributivity, factoring, division by multiplicative inverse, 
commutativity

• Instruction-level parallelization
generating SSE/AVX automatically

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

10



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Optimizations

So usually, you don’t need to know about details, just enable 
optimizations in your compiler...

Nevertheless, the compiler can only reason about constructs 
that it knows about!

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

11



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Optimizations

Things to be aware of:

• The compiler can completely see through classes, struct and 
complex objects initialization, member selection, destruction 
etc. as far as there are no pointers/heap access is involved!

• This means that you should not sacrifice code readability for 
speed!

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

12



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Optimizations

Things to be aware of:

• Pointers, new/delete/dynamic allocations, volatile variables, 
virtual methods, input from peripherals / streams / files 
breaks the compilers sight and -as such- optimizations.

Although, the first part - especially virtual method optimizations - are 
constantly being improved!

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

13



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Optimizations

Things to be aware of:

• The compiler can only reason about code, that it knows what 
it means!

Intrinsics!

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

14



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Intrinsics

An intrinsic is usually a function, that the compiler knows 
specifically how to handle.

• SSE/AVX instructions as intrinsics

• Special mathematical functions

• Data movement and bitwise manipulation

The special mathematical function intrinsics may highly overlap with standard built-in 
function support. Check with your compilers manual!

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

15



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Intrinsics

What is the difference between a built-in version and a hand made 
one?

• The compiler knows how to efficiently transcode it into low-level 
instructions

• Guaranteed precision up to the last digit

• May know how to handle special values

• May handle algebraic relations for it

• Have special implementations for different data types
int, float, double, ...

In the hand made case none of these apply!

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

16



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Math Intrinsics

Partial list of what is usually supported:

abs, acos, asin, atan, atan2, ceil, cos, cosh, exp, 
fabs, floor, fmod, ln, log10,
memory {compare, copy, set},
pow, rot, sin, sinh, sqrt,
string {concat, cmp, cpy, length},
tan, tanh

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

17



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Static Analysis

Static analysis consist of a special compilation, that runs specific
algorithms to find some complex error types, that are usually made 
by developers.

Many compilers support some form of static analysis.

Some things they can catch:

• Uninitialized variables, dangling references

• Null- and some invalid pointer errors,

• double delete, use-after-delete, memory leaks

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

18



GPU Lab

D. Berényi – M. F. Nagy-Egri

llv
m

.o
rg

/
L
o
g
o
.h

tm
l

Flags...

At least once, take the time and read through the flags of your 
compiler:

• How to enable optimizations?

• How to enable vectorization and special instructions (SSE, AVX)

• What intrinsics are supported?

• How does optimizations affect numerics? (fast vs. precise)

• How to enable static analysis?

23 Nov 2015

C
o
m

p
ile

rs a
n
d
 in

trin
sic

s

19


