
GPU Lab

D. Berényi – M. F. Nagy-Egri

λLectures on Modern Scientific Programming
Wigner RCP

23-25 November 2015

Overview of programming
languages and paradigms

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming Languages

Programming is just applied logic.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

2

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

History

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

3

LogicAlgebra

Type Theory
Computation

Theory

Topology

Algebraic

Topology

Category

Theory

Set Theory

Programming

Languages

Imperative

ProgrammingFunctional

ProgrammingHomotopy

Type Theory

𝜆-Calculus

Type Systems

XX. Century in a nutshell

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming paradigms

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

4

• Machine code

• Procedural programming

• Object-oriented programming

• Functional programming

Binary, Assembly

COBOL, FORTRAN, ALGOL, PL/I, BASIC, C

Simula, Smalltalk, C++, C#, Java

Lisp, Scheme, Clojure, Ocaml, Haskell, F#

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming paradigms

Machine code / Assembly:

• One writes a 1-1 mapping of the instructions that will be
executed

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

5

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming paradigms

Procedural programming:

• Step-by-step representation of what to do

• At higher-level, than instructions

• Code is structured by statement blocks, subroutines
that can do everything the language supports
these remove code repetitions

• Basic type checking

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

6

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming paradigms

Object-oriented programming:

• Data + data-manipulation routines grouped into „objects”

• Encapsulation: inner working of objects is hidden

• Interfaces, reusable patterns by inheritance of objects

• More advanced type system (subtyping, polymorphism)

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

7

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming paradigms

Functional programming:

• Main structures are expressions and functions
e.g. recursion instead of loop blocks

• Higher-order functions functions operating on functions

• Move away from global state changes
emphasis on purity, referential transparency, ...

• Even more advanced type system
pattern matching, stronger type inference, algebraic data types, higher
order and inductive types, higher polymorphism

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

8

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages by purpose

Programming languages can be split into two large groups:

• General-purpose Languages
They let you express many things: file management, mathematics,
abstract concepts, data management...

• Domain-specific Languages
They are designed to be used in a smaller domain, there they are better,
more concise, more understandable

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

9

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages

Why does the programming language matter?

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

10

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages

In a more sophisticated language one can:

• express complex problems with less code

• create more abstract, parametrizable, reusable parts

The language can host a more advanced type system that:

• Can express stronger invariants that the compiler can check
this results in less bugs, less debugging

• Let the compiler perform more optimizations
because it knows more about what the program is trying to achieve

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

11

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages

Why does the programming language matter?

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

12

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages

Sapir-Whorf hypothesis (linguistic relativity):

• The spoken/written language structures influence how we
conceptualize the world

• The language constructs may limit the cognitive categories

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

13

https://en.wikipedia.org/wiki/Linguistic_relativity

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages

Paul Graham: The blub paradox (2001)

• „What's so great about Lisp?
And if Lisp is so great, why doesn't everyone use it?”

• „Lisp is so great not because of some magic quality visible
only to devotees, but because it is simply the most powerful
language available.”

• „And the reason everyone doesn't use it is that
programming languages are not merely technologies,
but habits of mind as well, and nothing changes slower.”

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

14

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages

Paul Graham: The blub paradox (2001)

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

15

Machine

Code

Weird

Languages

Average Programmer

in a hypothetical

Average Language

Looking down:

he/she knows that these

languages are less expressive

Looking up:

he/she just sees weird stuff

At any point on the spectrum

http://www.paulgraham.com/avg.html

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages

Paul Graham: The blub paradox (2001)

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

16

Machine

Code

Weird

Languages

Average Programmer

in a hypothetical

Average Language

By induction,

the only point, where you see the differences between the languages

is the right most one!

http://www.paulgraham.com/avg.html

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages

• An attempt to measure language expressivity:

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

17

http://redmonk.com/dberkholz/2013/03/26/what-does-expressiveness-via-loc-per-commit-measure-in-practice/

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages

• An attempt
to measure
language
expressivity:

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

18

http://redmonk.com/dberkholz/2013/03/26/what-does-expressiveness-via-loc-per-commit-measure-in-practice/

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages

In scientific computing the picture needs more detail:
performance!

One needs explicit and deterministic control over memory and
execution. Many languages usually can’t give that.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

19

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Programming languages

In scientific computing the picture needs more detail:
performance!

We would like to argue, that using modern C++ in a functional
way can be very expressive but still maintain close-to-metal
performance!

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

20

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Type systems

Why does types matter?

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

21

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Type systems

Types were introduced, so that one may not
unintentionally perform meaningless operations on data

Example:
multiplying an integer with a character and writing the result
into a place representing a floating point number...

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

22

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Type systems

But it goes further:

Types group together a set of rules,
that the values of those types must obey

A program, that cannot by typed (type checked)
is invalid!

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

23

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Type systems

• A type system should reject invalid programs… but it shouldn’t
be too restrictive, to make meaningful programs invalid...

Bad type system: Good type system:

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

24

All possible programs

Correct programs

Programs that are valid

in the type system

All possible programs

Correct programs

Programs that are valid

in the type system

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Type systems

Disasters,
that could have been prevented by strong typing...

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

25

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Type systems

• ESA Ariane 5 (1996):
64-bit float → 16-bit int
conversion overflow

• 370M USD

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

26

http://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Type systems

• NASA Mars Climate Orbiter (1999)

metric-imperial
difference between
two software parts:

pound-seconds vs newton-seconds

• 327M USD

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

27

http://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Type systems

Besides preventing bugs, types are good for:

• Representing behaviour

• Providing genericity and parametricity (C++: templates)

• Providing polymorphism
different meaning in different contexts

• Making the code readable (overloading)

• Making composable building blocks (tuples, inheritance)

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

28

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Generic Types

Motivating example from Physics: the Pauli vector

Ԧ𝜎 = [𝜎1, 𝜎2, 𝜎3]

Where:

𝜎1 =
0, 1
1, 0

𝜎2 =
0,−𝑖
𝑖, 0

𝜎3 =
1, 0
0,−1

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

29

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Generic Types

Motivating example from Physics: the Pauli vector

Ԧ𝜎 = [𝜎1, 𝜎2, 𝜎3]

The outer structure is a 3-vector,
if 𝑢, 𝑣 are such vectors, then this means that the following are
valid:

𝑣 + 𝑢, 𝑣 − 𝑢, 𝑐 ⋅ 𝑣, 𝑣/𝑐

And there is a dot product: 𝑢 ⋅ 𝑣

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

30

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Generic Types

Motivating example from Physics: the Pauli vector

Ԧ𝜎 = 𝜎1, 𝜎2, 𝜎3

The one inner structure is a 2 x 2 matrix algebra, this means:

𝐴 + 𝐵, 𝐴 − 𝐵, 𝑐 ⋅ 𝐴, 𝐴/𝑐, 𝐴 ⋅ 𝐵

are valid.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

31

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Generic Types

Motivating example from Physics: the Pauli vector

Ԧ𝜎 = 𝜎1, 𝜎2, 𝜎3

The second inner structure is the complex number algebra, this
means:

𝑐 + 𝑑, 𝑐 − 𝑑, 𝑐 ∗ 𝑑, 𝑐/𝑑

are valid.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

32

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Generic Types

Motivating example from Physics: the Pauli vector

Ԧ𝜎 = 𝜎1, 𝜎2, 𝜎3

The inner most structure is the basic number algebra, again

𝑎 + 𝑏, 𝑎 − 𝑏, 𝑎 ∗ 𝑏, 𝑎/𝑏

are valid.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

33

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Generic Types

Motivating example from Physics: the Pauli vector

Ԧ𝜎 = 𝜎1, 𝜎2, 𝜎3

We would like to express something like this:

structure Vector3 is defined over elements of type T.
structure Matrix2x2 is defined over elements of type T.
structure Complex is defined over elements of type T.
structure Integer is represented by a type T.

structure PauliVector represented by type T is just a synonym of
Vector3 over Matrix2x2 over Complex over Integer over T.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

34

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Generic Types

Motivating example from Physics: the Pauli vector

Ԧ𝜎 = 𝜎1, 𝜎2, 𝜎3
In C++ this becomes:

template<typename T> class Vector3;

template<typename T> class Matrix2x2;

template<typename T> class Complex;

template<typename T> class Integer;

template<typename T>
using PauliVector = //just a synonym
Vector3< Matrix2x2< Complex< Integer< T > > > >;

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

35

The T type parameter

represents the underlying

structure as a parameter

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Generic Types

Motivating example from Physics: the Pauli vector

Ԧ𝜎 = 𝜎1, 𝜎2, 𝜎3
In C++ operators (like +, -, *, /) can be overloaded to behave
differently for each type, still being parametrized by the underlying
structure!

template<typename T>
Vector3<T> operator+ (Vector3<T> u, Vector3<T> v);

Thus, the algebraic structure can be stated parametrically, and will

be checked by the compiler!

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

36

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Types

• Programming is about structure and behaviour

• If you can recognize the structures in your problem,
it is already half solved,
you just represent those structures as types

• In scientific computing it is even more simpler
Mathematics already gives the structure

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

37

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Types

We would like
to argue, that
proper usage of
programming
language
features make
it possible, to
bring C++
there:

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

38

‘Old’ C++

Modern

C++

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Compiled vs. Interpreted

Another possible way to categorize languages is based on
whether they are:

• Compiled, or

• Interpreted

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

39

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Compiled vs. Interpreted

In compiled languages, the source code is transformed into
machine code at once before any execution take place

In traditional interpreted languages usually no byte code
conversion occurs, but the program dynamically loads (jumps
to) precompiled parametric parts during evaluation or translate
to some executable representation

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

40

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Compiled vs. Interpreted

In reality the spectrum is continuous

interpreted languages are using many trick to gain
performance:

• Compilation of frequently used parts

• Just-in-time compilation (compilation at runtime)

• Use of an intermediate representation, and/or byte code
(platform independent instruction set)

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

41

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Compiled vs. Interpreted

Advantages of interpreted languages:

• Dynamic language features
• Reflection

(inspect and/or modify program structure, e.g.: types, objects,
functions, etc.)

• Dynamic typing (apply / modify / check types at runtime)

• Platform independence

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

42

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Compiled vs. Interpreted

Disadvantages of interpreted languages:

• Overhead...
• By the interpreter phase

• Lack of optimizations

• Dynamic memory / lifetime management

• Security issues

• Reverse engineering issues

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

43

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Compiled vs. Interpreted

As we said, today the spectra is continuous, especially because
many languages gain support in both interpreted and both
compiled ways.

However, the performance overhead is prohibitive for scientific
applications to use interpreted languages

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

44

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Compiled vs. Interpreted

From time to time, post appear on the internet and got picked up,
that say:

“interpreted / dynamic language X beats all other compiled
languages by a large factor N”

When investigating these claims, it always turns out, that the
comparison is not meaningful, because:

• The program logic is not the same (lack of expertise in the compiled lang.)

• Allocations / deallocations managed completely differently

• Compiler optimizations settings are completely overlooked or unused

• Etc.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

45

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Compiled vs. Interpreted

Also, it should be taken into account, that it is possible to call
compiled parts from interpreted languages.

It is especially common to call C/C++/Fortran numerics from
python, Matlab etc. to improve floating-point performance.

The problem is, that all language support and type system are
advantages lost at the boundary.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

46

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Mathematical systems

Further notes on mathematical software, like:

• Mathematica

• Maple

• Matlab

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

47

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Mathematical systems

The overhead of different routines in these languages are highly
dependent on how close the data structures and functions to
the metal. This could mean factors of 1000 in runtime.

There are long books that compare different seemingly equivalent
solutions for best performance. It is still hard to catch up with native
code.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

48

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Language Safety

Yet another direction:

How much safety can a language guarantee?

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

49

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Language Safety

Types are not the only parts of the language that is used to
prevent erroneous behaviour at runtime.

A large class of problems arise from lifetime management and
multithreading issues.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

50

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Language Safety

One of the most critical applications in terms of safety are

browsers. Security issues are central.

It may not be a coincidence, that Mozilla started to invest in
the development of a new language, rust that has a strong
emphasis on safety.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

51

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Language Safety

Rust is a general purpose, multi-paradigm, compiled, systems
programming language, much like C++

It is like writing C++ from scratch using the best practices from all modern
languages.

But why yet another language?

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

52

https://www.rust-lang.org/
http://www.oreilly.com/programming/free/files/why-rust.pdf

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Language Safety

Rust can statically guarantee that
(unless you explicitly opt-out):

• Memory management is safe
• No array over-indexing, no nullpointer dereference, no indirect

access to already freed variables etc (dangling references), no
uninitialized variables, no iterator invalidation errors etc.

• Thread safety
• No undefined behaviour due to:

dataraces, thread unsafe operations

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

53

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Language Safety

Rust is prefers safety a little bit over speed, but:

• It has explicit memory management (no garbage collection)

• It is a fair compiled language built over the LLVM
infrastructure

According to available sources and our tests it worth
considering for scientific purposes in the near future.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

54

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Language Safety

We highly advise to check out rust, it is still a language under
development, you may run into missing features in the standard
library, but the core language is reliable and...

all the errors that you were continually committing in C/C++
are completely avoidable in rust.

You are not going to waste your time
on segfaults and crashes.

23 Nov 2015

O
v
e
rv

ie
w

 o
f p

ro
g
ra

m
m

in
g
 la

n
g
u
a
g
e
s

a
n
d
 p

a
ra

d
ig

m
s

55

