
OPENCL GPU
BEST PRACTICES

BENJAMIN COQUELLE
MAY 2015

2 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

TOPICS

 Data transfer

 Parallelism

 Coalesced memory access

 Best work group size

 Occupancy

 branching

 All the performance numbers come from a W8100 running on a 14.502.1019 driver

3 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER

 To transfer data to the GPU, data need to be page locked. This operation is called pinning and it is costly
(CPU time).

‒ Therefore, by default, each time you call a data transfer function, we need to pin the host buffer :

‒ clEnqueueWriteBuffer(queue, devicebuffer, …, hostbuffer, …)

‒ clEnqueueReadBuffer(queue, devicebuffer, …, hostbuffer, …)

 OpenCL provides a mechanism to “pre-pinned” a buffer and thus achieve the best transfer rate on the
PCIE bus

1. pinnedBuffer = clCreateBuffer(CL_MEM_ALLOC_HOST_PTR or CL_MEM_USE_HOST_PTR)

2. deviceBuffer = clCreateBuffer()

3. void *pinnedMemory = clEnqueueMapBuffer(pinnedBuffer) //pinning cost is incurred here

4. clEnqueueRead/WriteBuffer(deviceBuffer, pinnedMemory)

5. clEnqueueUnmapMemObject(pinnedBuffer, pinnedMemory)

 Typically an application will perform step 1, 2 ,3 and 5 once. While the mapped pinned buffer can be
uploaded several times from the CPU and thus different data can be uploaded while repeating step 4

4 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER

method 0.5MB 1MB 10MB 100MB

Pre-pinned 5GB/s 7.5GB/s 12GB/s 12.5GB/s

classic 2.1GB/s 3GB/s 6.3GB/s 6.8GB/s

PERFORMANCE RESULT

Write operation

method 0.5MB 1MB 10MB 100MB

Pre-pinned 5.2GB/s 7.4GB/s 10.9GB/s 12.GB/s

classic 2.GB/s 3GB/s 6.GB/s 6.5GB/s

Read operation

 Pre-pinned path is supported for the following calls

‒ clEnqueueRead/WriteBuffer

‒ clEnqueueRead/WriteImage

‒ clEnqueueRead/WriteBufferRect

 CL image calls must use pre-pinned mapped buffers on the host side

5 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER
PARALLELISM

6 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER PARALLELISM

 Modern GPUs have 2 DMAs engines

‒ Can do read/write operation in parallel

‒ Can also overlap compute and transfer

 To achieve parallel compute and transfer in OpenCL, one need to use multiple queues

QueueRead = clCreateCommandQueue()

QueueWrite = clCreateCommandQueue()

QueueCompute1 = clCreateCommandQueue();

clEnqueueReadBuffer(QueueRead)

clEnqueueWriteBuffer(QueueWrite)

clEnqueueNDRangeKernel(QueueCompute1)

clFlush(QueueRead);….

 On our OpenCL runtime, odd queue number are allocated to DMA1, even queue number to DMA2. Be
careful about the order your create your queues

7 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER PARALLELISM

8 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER

 http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Pr
ogramming_Guide-rev-2.7.pdf, chapter 5.6.2, page 89

 https://github.com/AMD-FirePro?tab=repositories

http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf

9 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

 OpenCL performance comes from parallelism

‒ clEnqueueNDRangeKernel (queue, kernel, dim, NULL, globalsize ,…)

‒ You want to have the biggest global size as possible to spawn as many threads as possible on a massively parallel
device

‒ Hawaii (W9100/S9150) is composed of 44 CUs, each CU has 4 16-length SIMD => 2816 threads

‒ This GPU can actually have 112640 active threads running at the same time.

10 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

 A “hardware thread” (a wavefront) is composed of 64 threads

 A wavefront runs on one SIMD inside a CU => a wavefront executes in 4 steps

 Each SIMD can have 10 active wavefronts

 This means we can have 44*4*10*64 = 112640 active threads

11 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

12 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

 This is an example from the SDK used to show a CL2.0 feature

 Though I don’t think it always exposes the fastest way of doing a search in an array

 In this example, we do a N-search where N = 256 => at each steps we have M/256 threads running on the
GPU. Where M is the array size. This is not always enough to fill the GPU

 By having each thread looking into a different entry in the array (one thread per entry) we can increase the
parallelism and actually write a simpler kernel when the array in not too big

BINARY SEARCH

Performance 4096 262144 4194304 16777216

M-search 0.01 0.03 0.3 2.23

256-search 0.08 0.08 0.3 1.1

NB threads 4096 262144 4194304 16777216

M-search 4096 262144 4194304 16777216

256-search 256 1024 16384 65536

13 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

 What is important to notice is we need parallelism to use the GPU.

 If we don’t have a big array, the algorithm exposing the more parallelism will give the best performance.

 Though a brut force approach may not be useful when the array is really big and a N-search can be used to
reduce the size before reapplying our brute force algorithm.

14 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

 Sometimes you have a lot of small independent batches to process

‒ Big linear systems break down in small pieces

‒ Several small meshes to animate

‒ ….

 Our GPUs have 8 ACEs, Asynchronous Compute Engines.

‒ ACEs are responsible for compute shader scheduling

‒ ACEs are independent

‒ ACEs dispatch tasks to the compute engines as resources permit

 ACEs are independent virtual engine, enabling true Multiprocessor operation.

 In OpenCL you can access them by using multiple OpenCL command queues!!

MULTI-TASKING

15 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM
GPU ENGINES EXPOSED TO OS, PROCESS EXPLORER

16 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

MEMORY ACCESS

 Coalesced memory access

‒ Means adjacent thread access adjacent memory

 Our cache line is 64 bytes

‒ any fetch request will actually fetch 64 bytes, even if you only look into a single char

 Data/algorithm needs to be arranged to maximize the bandwidth usage

‒ For a simple vector addition a simple linear access is enough to have coalesced access

 Here each memory fetch will be in the same cache line

‒ &A[0] =0xNNNN, &A[1]=0xNNNN + 4, …, &A[15] = 0xNNNN + 60, &A[16] = 0xNNNN + 64

‒ We maximize the bandwidth usage

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 …

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] …

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B[9] …

17 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

MEMORY ACCESS

 What happened if we don’t have coalesced access.

 For example we have a stride between each relevant data we need to look at

 Here each fetch will use one cache line

‒ &A[0]=0xNNNN, &A[17] =0xNNNN + 68…

 For the first 10 threads we will fetch 2*64*10 = 1280 bytes….

 ….while only 80 bytes are useful, we waste nearly 1kB of data and we only use 1/16 of the bandwidth

 Here we have a simple test case. But this needs to be taken into account when working on more complex
data. This is why SoA needs to be preferred over AoS.

 Coherency and locality of your data are key to achieve the best performance

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 …

A[0] A[1+16] A[2+16] A[3+16] A[4+16] A[5+16] A[6+16] A[7+16] A[8+16] A[9+16] …

B[0] B[1+16] B[2+16] B[3+16] B[4+16] B[5+16] B[6+16] B[7+16] B[8+16] B[9+16] …

18 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

MEMORY ACCESS

Read linear
uncached

Read Linear
cached

Read Single cache
line

Read random Read uncombine
uncached

325 GB/s 1473 GB/s 3825GB/s 54GB/s 182GB/s

GLOBAL_MEMORY_BANDWIDTH

//read linear cached
val = val + input[gid + 0];
val = val + input[gid + 1]; // this is in l1 cached as requested from previous fetch
val = val + input[gid + 2]; // this is in l1 cached…
…
output[gid] = val;

//read linear uncombined uncached
#define NUM_READS 32
val = val + input[gid * NUM_READS + 0];
val = val + input[gid * NUM_READS + 1];
val = val + input[gid * NUM_READS + 2];…

19 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

BEST WORK GROUP SIZE

 It is important to think about the work group size as it is how you will map the different work-items on the
hardware

 On AMD HW, a wavefront is 64 threads => the most efficient work group sizes have to be multiple of 64

‒ Using 65 threads in a work group will require two wavefronts to execute and waste 63 lanes.

 This value can easily be queried in OpenCL using this API

‒ clGetKernelWorkGroupInfo (CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE)

‒ It is available since OpenCL 1.1 and can help you writing more generic code to support different HW vendor

 You can also specify the work group size at compile time using __atribute__ in your OpenCL C code

‒ __attribute__((reqd_work_group_size(8,8,1))) __kernel void ... This will help the compiler and produce a code
specific to a work group size of 8x8.

‒ This can help for some optimizations.

‒ For example, in such case our compiler won’t generate barrier instruction for barrier(); but just a fence

20 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

OCCUPANCY

 This is the capacity to keep the GPU busy by being able to have several wavefronts running on the same
SIMD

 One SIMD can have up to 10 active wavefronts

 Switching between wavefronts allows to avoid waiting for memory transaction. A fetch/write can take
100s of clock cycle to execute while an add instruction on float takes one clock.

21 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

OCCUPANCY

 We have 64 KB of registers (VGPRs) per SIMD. This is 32 bits registers

 This means 16384 VGRPs.

 A SIMD runs a wavefront of 64 threads => 256 VGPRs per thread maximum

 If a kernel uses more than 256 VGPRs, we start spilling which will affect greatly the performance as the
spilling occurs in global memory

 If we use less than 256 VGPRs we can actually have several wavefront running on the same SIMD

‒ With 128 VGPRs we can have 2 waves

‒ With 25 we can have 10 waves

VGPRS

22 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

OCCUPANCY

 There are two main reasons to spill

 A big kernel

‒ The bigger the kernel is, the more registers you are likely to use

‒ In that case the compiler will try to spill to improve the occupancy. But sometime, it is so big that we spill and have a
low occupancy (ie megakernel for raytracer : 15k-22k lines for a single kernel)

‒ The solutions are to “split” the kernel into smaller ones and/or change the algorithm

 Forcing an unroll, this will actually behave like a big kernel

‒ Avoid unrolling if you find you use too many registers

 One can easily find the VGPRs usage.

‒ codeXL, our profiling tool, shows the GPR usage and the spilling (scratch reg).

‒ These information can be directly find in the isa code

‒ You can access the isa code with codeXL or by dumping it

‒ AMD_OCL_BUILD_OPTIONS_APPEND=-save-temps

SPILLING

23 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

OCCUPANCY

 We have 64 KB of LDS per CU, but only 32 KB available per workgroup

 If you have a work group of size 64 and require 32KB of LDS, you won’t be able to run more than 2 waves
per CU => very low occupancy as two SIMDs won’t be used

 If you have a work group of size 256 and use 32 KB of LDS, you can have up to two waves per SIMD

‒ You actually need 8KB per wavefront

‒ Thus you can have up to 8 wavefronts running per CU => 2 per SIMD

 LDS is a very fast low latency programmable cache, but it is a limited amount of resource. Use it sparingly

LOCAL MEMORY/WORK GROUP SIZE

24 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

OCCUPANCY

 Use codeXL to see where you lose in occupancy.

 The conjunction of LDS/work group size and registers usage will impact the occupancy

 On very slow kernel the problem can be obvious, request of 32KB of LDS, using more than 128GPRs….

 Though if you are not memory bound having a low occupancy is not necessarily bad. But very few kernels
don’t depend on the bandwidth

25 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

BRANCHING

 In a wavefront all the lanes will execute the same instructions

 In case of branching if one thread diverge in a wavefront we will need to go through both path and mask
the result of the unwanted path for the others threads

if(get_local_id(0)%2==0)

{} //executes in T1

else

{} //executes in T2

 Here the overall time is T1+T2

 When branching can be avoided, you will achieve better performance

 In the example above consider rearranging the data or having two different kernels

