
OPENCL GPU
BEST PRACTICES

BENJAMIN COQUELLE
MAY 2015

2 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

TOPICS

 Data transfer

 Parallelism

 Coalesced memory access

 Best work group size

 Occupancy

 branching

 All the performance numbers come from a W8100 running on a 14.502.1019 driver

3 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER

 To transfer data to the GPU, data need to be page locked. This operation is called pinning and it is costly
(CPU time).

‒ Therefore, by default, each time you call a data transfer function, we need to pin the host buffer :

‒ clEnqueueWriteBuffer(queue, devicebuffer, …, hostbuffer, …)

‒ clEnqueueReadBuffer(queue, devicebuffer, …, hostbuffer, …)

 OpenCL provides a mechanism to “pre-pinned” a buffer and thus achieve the best transfer rate on the
PCIE bus

1. pinnedBuffer = clCreateBuffer(CL_MEM_ALLOC_HOST_PTR or CL_MEM_USE_HOST_PTR)

2. deviceBuffer = clCreateBuffer()

3. void *pinnedMemory = clEnqueueMapBuffer(pinnedBuffer) //pinning cost is incurred here

4. clEnqueueRead/WriteBuffer(deviceBuffer, pinnedMemory)

5. clEnqueueUnmapMemObject(pinnedBuffer, pinnedMemory)

 Typically an application will perform step 1, 2 ,3 and 5 once. While the mapped pinned buffer can be
uploaded several times from the CPU and thus different data can be uploaded while repeating step 4

4 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER

method 0.5MB 1MB 10MB 100MB

Pre-pinned 5GB/s 7.5GB/s 12GB/s 12.5GB/s

classic 2.1GB/s 3GB/s 6.3GB/s 6.8GB/s

PERFORMANCE RESULT

Write operation

method 0.5MB 1MB 10MB 100MB

Pre-pinned 5.2GB/s 7.4GB/s 10.9GB/s 12.GB/s

classic 2.GB/s 3GB/s 6.GB/s 6.5GB/s

Read operation

 Pre-pinned path is supported for the following calls

‒ clEnqueueRead/WriteBuffer

‒ clEnqueueRead/WriteImage

‒ clEnqueueRead/WriteBufferRect

 CL image calls must use pre-pinned mapped buffers on the host side

5 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER
PARALLELISM

6 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER PARALLELISM

 Modern GPUs have 2 DMAs engines

‒ Can do read/write operation in parallel

‒ Can also overlap compute and transfer

 To achieve parallel compute and transfer in OpenCL, one need to use multiple queues

QueueRead = clCreateCommandQueue()

QueueWrite = clCreateCommandQueue()

QueueCompute1 = clCreateCommandQueue();

clEnqueueReadBuffer(QueueRead)

clEnqueueWriteBuffer(QueueWrite)

clEnqueueNDRangeKernel(QueueCompute1)

clFlush(QueueRead);….

 On our OpenCL runtime, odd queue number are allocated to DMA1, even queue number to DMA2. Be
careful about the order your create your queues

7 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER PARALLELISM

8 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

DATA TRANSFER

 http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Pr
ogramming_Guide-rev-2.7.pdf, chapter 5.6.2, page 89

 https://github.com/AMD-FirePro?tab=repositories

http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf

9 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

 OpenCL performance comes from parallelism

‒ clEnqueueNDRangeKernel (queue, kernel, dim, NULL, globalsize ,…)

‒ You want to have the biggest global size as possible to spawn as many threads as possible on a massively parallel
device

‒ Hawaii (W9100/S9150) is composed of 44 CUs, each CU has 4 16-length SIMD => 2816 threads

‒ This GPU can actually have 112640 active threads running at the same time.

10 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

 A “hardware thread” (a wavefront) is composed of 64 threads

 A wavefront runs on one SIMD inside a CU => a wavefront executes in 4 steps

 Each SIMD can have 10 active wavefronts

 This means we can have 44*4*10*64 = 112640 active threads

11 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

12 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

 This is an example from the SDK used to show a CL2.0 feature

 Though I don’t think it always exposes the fastest way of doing a search in an array

 In this example, we do a N-search where N = 256 => at each steps we have M/256 threads running on the
GPU. Where M is the array size. This is not always enough to fill the GPU

 By having each thread looking into a different entry in the array (one thread per entry) we can increase the
parallelism and actually write a simpler kernel when the array in not too big

BINARY SEARCH

Performance 4096 262144 4194304 16777216

M-search 0.01 0.03 0.3 2.23

256-search 0.08 0.08 0.3 1.1

NB threads 4096 262144 4194304 16777216

M-search 4096 262144 4194304 16777216

256-search 256 1024 16384 65536

13 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

 What is important to notice is we need parallelism to use the GPU.

 If we don’t have a big array, the algorithm exposing the more parallelism will give the best performance.

 Though a brut force approach may not be useful when the array is really big and a N-search can be used to
reduce the size before reapplying our brute force algorithm.

14 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM

 Sometimes you have a lot of small independent batches to process

‒ Big linear systems break down in small pieces

‒ Several small meshes to animate

‒ ….

 Our GPUs have 8 ACEs, Asynchronous Compute Engines.

‒ ACEs are responsible for compute shader scheduling

‒ ACEs are independent

‒ ACEs dispatch tasks to the compute engines as resources permit

 ACEs are independent virtual engine, enabling true Multiprocessor operation.

 In OpenCL you can access them by using multiple OpenCL command queues!!

MULTI-TASKING

15 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

PARALLELISM
GPU ENGINES EXPOSED TO OS, PROCESS EXPLORER

16 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

MEMORY ACCESS

 Coalesced memory access

‒ Means adjacent thread access adjacent memory

 Our cache line is 64 bytes

‒ any fetch request will actually fetch 64 bytes, even if you only look into a single char

 Data/algorithm needs to be arranged to maximize the bandwidth usage

‒ For a simple vector addition a simple linear access is enough to have coalesced access

 Here each memory fetch will be in the same cache line

‒ &A[0] =0xNNNN, &A[1]=0xNNNN + 4, …, &A[15] = 0xNNNN + 60, &A[16] = 0xNNNN + 64

‒ We maximize the bandwidth usage

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 …

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] …

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B[9] …

17 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

MEMORY ACCESS

 What happened if we don’t have coalesced access.

 For example we have a stride between each relevant data we need to look at

 Here each fetch will use one cache line

‒ &A[0]=0xNNNN, &A[17] =0xNNNN + 68…

 For the first 10 threads we will fetch 2*64*10 = 1280 bytes….

 ….while only 80 bytes are useful, we waste nearly 1kB of data and we only use 1/16 of the bandwidth

 Here we have a simple test case. But this needs to be taken into account when working on more complex
data. This is why SoA needs to be preferred over AoS.

 Coherency and locality of your data are key to achieve the best performance

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 …

A[0] A[1+16] A[2+16] A[3+16] A[4+16] A[5+16] A[6+16] A[7+16] A[8+16] A[9+16] …

B[0] B[1+16] B[2+16] B[3+16] B[4+16] B[5+16] B[6+16] B[7+16] B[8+16] B[9+16] …

18 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

MEMORY ACCESS

Read linear
uncached

Read Linear
cached

Read Single cache
line

Read random Read uncombine
uncached

325 GB/s 1473 GB/s 3825GB/s 54GB/s 182GB/s

GLOBAL_MEMORY_BANDWIDTH

//read linear cached
val = val + input[gid + 0];
val = val + input[gid + 1]; // this is in l1 cached as requested from previous fetch
val = val + input[gid + 2]; // this is in l1 cached…
…
output[gid] = val;

//read linear uncombined uncached
#define NUM_READS 32
val = val + input[gid * NUM_READS + 0];
val = val + input[gid * NUM_READS + 1];
val = val + input[gid * NUM_READS + 2];…

19 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

BEST WORK GROUP SIZE

 It is important to think about the work group size as it is how you will map the different work-items on the
hardware

 On AMD HW, a wavefront is 64 threads => the most efficient work group sizes have to be multiple of 64

‒ Using 65 threads in a work group will require two wavefronts to execute and waste 63 lanes.

 This value can easily be queried in OpenCL using this API

‒ clGetKernelWorkGroupInfo (CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE)

‒ It is available since OpenCL 1.1 and can help you writing more generic code to support different HW vendor

 You can also specify the work group size at compile time using __atribute__ in your OpenCL C code

‒ __attribute__((reqd_work_group_size(8,8,1))) __kernel void ... This will help the compiler and produce a code
specific to a work group size of 8x8.

‒ This can help for some optimizations.

‒ For example, in such case our compiler won’t generate barrier instruction for barrier(); but just a fence

20 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

OCCUPANCY

 This is the capacity to keep the GPU busy by being able to have several wavefronts running on the same
SIMD

 One SIMD can have up to 10 active wavefronts

 Switching between wavefronts allows to avoid waiting for memory transaction. A fetch/write can take
100s of clock cycle to execute while an add instruction on float takes one clock.

21 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

OCCUPANCY

 We have 64 KB of registers (VGPRs) per SIMD. This is 32 bits registers

 This means 16384 VGRPs.

 A SIMD runs a wavefront of 64 threads => 256 VGPRs per thread maximum

 If a kernel uses more than 256 VGPRs, we start spilling which will affect greatly the performance as the
spilling occurs in global memory

 If we use less than 256 VGPRs we can actually have several wavefront running on the same SIMD

‒ With 128 VGPRs we can have 2 waves

‒ With 25 we can have 10 waves

VGPRS

22 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

OCCUPANCY

 There are two main reasons to spill

 A big kernel

‒ The bigger the kernel is, the more registers you are likely to use

‒ In that case the compiler will try to spill to improve the occupancy. But sometime, it is so big that we spill and have a
low occupancy (ie megakernel for raytracer : 15k-22k lines for a single kernel)

‒ The solutions are to “split” the kernel into smaller ones and/or change the algorithm

 Forcing an unroll, this will actually behave like a big kernel

‒ Avoid unrolling if you find you use too many registers

 One can easily find the VGPRs usage.

‒ codeXL, our profiling tool, shows the GPR usage and the spilling (scratch reg).

‒ These information can be directly find in the isa code

‒ You can access the isa code with codeXL or by dumping it

‒ AMD_OCL_BUILD_OPTIONS_APPEND=-save-temps

SPILLING

23 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

OCCUPANCY

 We have 64 KB of LDS per CU, but only 32 KB available per workgroup

 If you have a work group of size 64 and require 32KB of LDS, you won’t be able to run more than 2 waves
per CU => very low occupancy as two SIMDs won’t be used

 If you have a work group of size 256 and use 32 KB of LDS, you can have up to two waves per SIMD

‒ You actually need 8KB per wavefront

‒ Thus you can have up to 8 wavefronts running per CU => 2 per SIMD

 LDS is a very fast low latency programmable cache, but it is a limited amount of resource. Use it sparingly

LOCAL MEMORY/WORK GROUP SIZE

24 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

OCCUPANCY

 Use codeXL to see where you lose in occupancy.

 The conjunction of LDS/work group size and registers usage will impact the occupancy

 On very slow kernel the problem can be obvious, request of 32KB of LDS, using more than 128GPRs….

 Though if you are not memory bound having a low occupancy is not necessarily bad. But very few kernels
don’t depend on the bandwidth

25 | PRESENTATION TITLE | MAY 21, 2015 | CONFIDENTIAL

BRANCHING

 In a wavefront all the lanes will execute the same instructions

 In case of branching if one thread diverge in a wavefront we will need to go through both path and mask
the result of the unwanted path for the others threads

if(get_local_id(0)%2==0)

{} //executes in T1

else

{} //executes in T2

 Here the overall time is T1+T2

 When branching can be avoided, you will achieve better performance

 In the example above consider rearranging the data or having two different kernels

