Semianalytic modeling of galaxy spectra

Dezső Ribli, Supervisor : László Dobos

Spectral Energy Distribution (SED) of galaxies

Studying distant galaxies:

- Structure is not resolved
 - Not much information in 2D pictures
 - Especially the very distant ones
 - the more distant, the more interesting
 - galaxy picture here

Spectral Energy Distribution (SED) of galaxies

Studying distant galaxies:

- Structure is not resolved
 - Not much information in 2D pictures
 - Especially the very distant ones
 - the more distant, the more interesting
 - galaxy picture here
- More information in SEDs!
 - e.g.: redshift (distance)

Spectral Energy Distribution (SED) of galaxies

- The origin of galaxy SED:
 - Integrated light of all objects in the galaxy
 - stars
 - active nucleus
 - emission, and absorption of interstellar matter (ISM)
- Information in galaxy SED:
 - redshift
 - age
 - velocity dispersion of stars
 - amount of ISM
 - more?

Assumptions:

- SED of a star is given if we know:
 - initial mass
 - initial chemical composition
 - age
 - SED is given by stellar evolution models
- universal Initial Mass Function (IMF)
 - the most important
 - and debated

Stellar Population:

- SED of stars + IMF : Population of stars
 - variables: age, chemical comp.

hullámhossz [A]

Stellar Population:

- SED of stars + IMF : Population of stars
 - variables: age, chemical comp.

Stellar Population Synthesis:

- Multiple populations > GALAXY
 - variables:
 - ages of populations (star formation history)
 - chemical composition

- Other factors:
 - redshift
 - velocity dispersion
 - convolution of spectra with Gauss

- Interstellar matter simple model
 - simple model is needed
 - there are very complicated ones, there is not enough information in the spectra to account for these complicated models

Computation

Isochrone synthesis:

- Convolution of SSP-SEDs, and SFH
 - ~4000 wavelengths, ~200 timesteps
- Age dependent effect of ISM
- Velocity distribution: convolution with a Gaussian
- Interpolation in chemical composition

Computation on GPU:

- ~4000 (almost) independent points
 - massive parallelization
- Interpolation between original models, convolution in time, convolution in wavelengths all can be done in parallel:

Performance:

- GALAXEV: seconds
- SPS-FAST (c++, OpenCL):
 - GTX 670: 0.3 ms
 - Intel core i7-2600: 2.5 ms

Fitting

- 5-8 parameters
- Degenerate parameter space (age-chemical composition)
- Model needs refinement

Fitting methods

- In practice now:
 - with pre-generated sample galaxies
 - small discrete grid
 - only reduced parameters used (spectral indices)
 - approximation: MOPED
- MCMC fitting:
 - Explores the parameter space
 - Robust
 - Shows degenerations, and other problems
 - ~50000 points needed, (~15 seconds)

MCMC SPS model fitting example

- Based on GALAXEV:
 - Bruzual and Charlot models
 - Exponential decay in SFH
 - 2 component Charlot and Fall ISM model
 - Random high SNR galaxy from SDSS spectral survey
 - 50000 iterations

t₀ [10⁸ év]

MCMC

Burn-in

MCMC

Usage, goals

Usage:

- Analysis of big databases
- improvement of SPS models
- detailed inspection of a galaxy in seconds

Goals:

- introduce it to the researches of the field
- incorporate different SPS models

Thank you for your attention!

The research was supported by the Hungarian OTKA grants 103244 and 114560