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Kovács,S.Krieg,T. Lippert,D. Nógrádi,A. Pásztor, K.K.
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Lattice Quantum Chromodynamics (QCD)

First principles calculations

Field theory on a discrete space-time lattice

Building blocks:

Quarks: Complex 3d vectors on the sites ψ (x) =

 ψ1 (x)
ψ2 (x)
ψ3 (x)


Gluons: SU(3) matrices on the links Uµ (x)

Quark field

Quark field

Gluon field
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Basic properties of QCD

Color and electric field of three charges

color field of three quarks electric field of three quarks
http://www.physics.adelaide.edu.au Mathematica

Confinement

Free quark cannot be observed

The interaction at large distances is very strong
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Basic properties of QCD

Asymptotic freedom

In high energy hadronic collisions the interaction between
the quarks is small

At high energy the quarks and gluons form a so-called
quark gluon plasma

Transition between the two forms of strongly interacting matter
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Monte-Carlo integration and Importance sampling

Computations of obversables (O) by taking into account all
possible configurations with weight P (U)

In a typical simulation: O(107) dimensional integrals

Direct evaluation is unfeasible

Monte Carlo methods and importance sampling

Selecting points randomly in the configuration space

Average O over these configurations with weight P (U)

Problem: Most configurations will have small weight

Solution: Sampling the
configurations with P (U).

〈O〉= ∑i∈ all config O (i)

F. Pittler: QCD on the lattice 5



Introduction Monte-Carlo methods Parallelization Inversion

Parallel improvement

Even in this case the problem is computationally
demanding

Today’s trend: Computing using many cores

Locality

All field theoretic models
have this property

Common task: Computing
plaquettes

P(x) = Uµ (x)Uν (x +µ)U†
µ (x +ν)U†

ν (x)

Translational invariance

We have to do the same
operation on all sites

Communication only between neighbors
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Lattice QCD on the GPU

We have a lattice QCD code in CUDA

Each site is processed by one cuda thread

Global sum is needed in

∑
x∈ all sites

P (x)

〈ψ|χ〉= ∑
x∈ all sites

ψ
† (x) χ (x)
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Graphical cards at the Eötvös Loránd University

Nvidia 770 Kepler architecture

1536 cores

1046 MHz clock speed

2048 MB memory

224 GB
s mem. bandwidth

3.9 Tflop
s peak performance

250 Gflop
s max. performance with our

code
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Graphical cards at the Eötvös Loránd University

GPU cluster

176 nodes

352 GPUs: GTX 470/670/770

387072 cores

1.1 Pflop
s peak performance

78 Tflop
s max. performance with our

code
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GPU cluster at the Eötvös Loránd University
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Computations in Lattice QCD

Dirac operator : D(U) + m

Fermionic action is bilinear: Sf = ψ̄ (D (U) + m)ψ

Many possibilities for D.

Overlap spectrum

Wilson spectrum
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Dw (x ,y) =
±4

∑
µ=±1

(
1 + γµ

)
δx ,y+µ

Doverlap (x ,y) = 1+γ5sign(γ5Dw (x ,y))

We choose the best D (U) available:Overlap

Drawback: expensive to compute and extremely expensive
to invert.
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Inversion, solving Doverlapx = b for x

Iterative methods

All methods essentially work in a Krylov subspace:

We generate the sequence

V = {b,Db,D2b · · ·Dmb m� n}

For example in GMRES the new approximation to the
solution will be x1 ∈ V for which

||r1||2 = ||Dx1−b||2 is minimal

The error after this step is e = x−x1

To obtain a correction to x1 we have to solve a similar
equation:

D ·e = D ·x−D ·x1 = b−D ·x1 = r1
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Domain Decomposition Multigrid

Iterative Methods: Smoother

In the Krylov subspace the high modes of D dominate

The components of the error in the direction of low modes
decreases much more slowly as the iteration proceeds

Smoother is very efficient if the error contains high
frequency components

What to do with the low frequency components of the error?

After smoothing restricting the residual to a coarser grid

Low components of the error appear more oscillatory on
the coarse grid

Smoothing on the coarse grid

Correct the error on the fine grid with the interpolation of
the coarse grid solution
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Example:Restriction

Goal: Move to a basis where the low modes dominate

Restriction Frommer et al.[2013], Luscher[2007]

Pick n crude approximation of the low modes (φ )

Project them to the blocks:φb
n (x) =

{
φ (x) x ∈ b

0 otherwise

Orthogonalize them in each block to get a ”much higher
dimensional” space

Project the original residual to this new basis

ψB(b)[n] = ∑
x∈b

φ
b
n (x)ψ (x)
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CPU results

Conjugate Gradient

Multigrid
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CUDA implementation details

Assign to each lattice site a cuda thread

Organize them in such a way that each physical lattice
block corresponds to a cuda thread block

Use available reduction routines to compute scalar
products within a block

F. Pittler: QCD on the lattice 15



Introduction Monte-Carlo methods Parallelization Inversion

Summary

This work is in progress

Different parts of the code are ready

The whole program for the overlap inversion is not done yet

From the CPU experience we expect a factor 4 gain

Thank you for your attention!
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Backup slide:Blocking efficiency for localized and
delocalized eigenmodes

Localized Delocalized
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