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Prelude: why solar energy?



Grand Energy Challenge
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Demand gap

- double demand by 2050, triple demand by 2100

- gap between production and demand: 

14TW(2050)-33TW(2100)

2100:   40-50 TW  
2050:  25-30 TW

0.00

5.00

10.00

15.00

20.00

25.00

1970 1990 2010 2030

T
W

 

World Energy Demand total

industrial

developing

US

ee/fsu

10 TW = 10,000 1GW power plants

One 1GW new power plant/day 

for 27 years!



Oil: Works today, Hurts tomorrow
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ultimate recovery: 
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1. Oil and coal will run out
2. Produced by regions of conflict
3. Uneven distribution of production, wealth
4. Primary cause of climate change
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The Solar Moore’s Law
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Price drops by 20% for every doubling of production
No doubling per 18 months as area is not scaled down as in chips 

DOE



Sources of Renewable Energy
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Solar
1.2 x 105 TW on Earth’s surface

36,000 TW on land (world)
2,200 TW on land (US)

Biomass
5-7 TW gross (world)

0.29% efficiency for 
all cultivatable land
not used for food

Hydroelectric

Geothermal

Wind
2-4 TW extractable  

4.6 TW gross (world)
1.6 TW technically feasible
0.6 TW installed capacity 

0.33 gross (US)9.7 TW gross (world)
0.6 TW gross (US)

(small fraction technically feasible)

Tide/Ocean 
Currents 
2 TW gross

energy gap
~ 14 TW by 2050
~ 33 TW by 2100



Solar is the Most Promising Energy Resource
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Sunlight is a singularly suitable energy resource

1. the only resource in sufficient quantity

2. environmental impact is minimal and benign

3. no catastrophic breakdown mode

4. politically safest, conflict-free

5. price volatility is minimal



1. Third generation solar cells

2. Multiple exciton generation (MEG)

3. MEG in colloids and MEG device

4. Results
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Outline
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Generations

Value:   Power/Price

1st generation: Increase power by increasing quality 
crystalline silicon: SunPower: 20-22%

2nd generation: Decrease price (decrease production 
temperature) amorphous Si, CIGS, 
CdTe: First Solar: 13-15%

3rd generation: Increase power, decrease price
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Generations

Definition of 3rd generation:

(1) a power conversion efficiency
greater than the Shockley–
Queisser limit of 31%
(2) a very low cost per unit area.
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1. Third generation solutions
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First & Second generation

VB

CB

Shockley-Quessier limit
~31% 

• single junction
• Fermi-Dirac absorption above band edges
• one exciton/photon
• relaxation to band edges

• 47% heat
• 18% transmission of sub band gap photons
• 1.5% radiative recombination

g
ap
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Improving the absorber material I

Physics:
1. Nanostructure forms on surface, 

multiple reflections enhance absorption
2. High density of defect states in gap
3. “Hyper-doping” of top junction layer: sulfur (Mazur @ Harvard)

Nano-sized “coaxial cable” (M. Naughton @ BC)
formed in amorphous Si
can optimize these constraints

New materials:

Perovskite crystals

Redirect and capture light with plasmon resonance of Ag nanoparticles

ABX3

Nature Materials 13, 838–842 (2014)

17.9% efficiency

5X enhancement over 
the past 5 years

Stability and Toxicity??
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Improving the absorber material V

Tin monosulfide (SnS) crystals (Roy Gordon @ Harvard)

Absorbs light much more 
effectively than Si

But

crystal is p-type ”self-doped”

Calculations by
Malone, Kaxiras @ Harvard

&
Gali @ Wigner

p-type ”self-doping” due to Sn-
vacancies

Sb is suggested for compensation
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Third generation solutions
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2. Multiple Exciton Generation
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Achieving MEG

Carrier Multiplication, faster than phonon assisted decay and gives us
additional excitons (enhanced current)

• Confine charge carriers in normal semiconductors (Nozik)

+ phonon bottleneck

Semiconductor
Nanocrystals

Proof of MEG in solution ≠ MEG in device

• MEG in colloids, simplified situtation

• MEG in devices, more complicated issue

one experimental proof so far



18

3. MEG in the lab and MEG device
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MEG in silicon NPs

Rpop = look at populations right after pump (t=0) and after AR is comple (ps)

Look at pump flux → 0 limit!

MEG appears in
Silicon

Nanocrystals

surface-to-volume
ratio is large
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>100% MEG solar cell

• Overall efficiency reached >4%
• 4% of total photocurrent from MEG!
• key: hydrazine treatment

Science 334, 1530 (2011)

EQE, External Quantum Efficiency:
Quantum efficiency of the whole device

IQE, Internal Quantum Efficiency:
After removal of reflectance
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4. Results



Selected Result I
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Solar nanocomposites with complementary charge extraction pathways
for electrons and holes: Si embedded in ZnS
S. Wippermann, M. Vörös,  A. Gali, F. Gygi, G. Zimanyi, and G. Galli
Physical Review Letters 112 106801 (2014).

http://prl.aps.org/


Si NCs in a-ZnS matrix: charge extraction

23

Complementary charge extraction
pathways and small gap



Result II: using Mott-insulators instead of NPs
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Limitations of the hybrid functional approach to electronic structure of 
transition metal oxides
John E. Coulter, Efstratios Manousakis, and Adam Gali
Physical Review B 88 041107(R) (2013).

Optoelectronic excitations and photovoltaic effect in strongly correlated 
materials
John E. Coulter, Efstratios Manousakis, and Adam Gali
Physical Review B accepted, arXiv:1409.8261

http://prb.aps.org/abstract/PRB/v88/i4/e041107
http://prb.aps.org/
http://prb.aps.org/
http://arxiv.org/abs/1409.8261


VO2 as a prototypical strongly correlated crystal
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Experiments: long recombination lifetime (microseconds) in VO2

strongly correlated materials are promising and completely new candidates
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Thank you for your attention


