Topological Insulators and Entanglement Spectra

Janos Asboth

Wigner RCP, Hungarian Academy of Sciences
Is the full set of Schmidt coefficients more useful than just the entanglement entropy?

\[
\hat{H} = H_{mn} \hat{c}_m^\dagger \hat{c}_n = \sum_{\nu} E^{(\nu)} \hat{b}^{(\nu)} \hat{b}^{(\nu)_\dagger}
\]

\[
H_{mn} = \sum_{\nu} E^{(\nu)} v_{m}^{(\nu)} v_{n}^{(\nu)_*}
\]

\[
\hat{b}^{(\nu)} = \sum_{n} v_{n}^{(\nu)_*} \hat{c}_n \quad \hat{c}_m = \sum_{\nu} v_{m}^{(\nu)} \hat{b}^{(\nu)}
\]

\[
\rho_A = \text{Tr}_B \langle GS \rangle \langle GS \rangle
\]

\[
\rho_A = \frac{e^{-H_{\text{ent}} mn \hat{c}_m^\dagger \hat{c}_n}}{\text{Tr} e^{-H_{\text{ent}} mn \hat{c}_m^\dagger \hat{c}_n}}
\]

\[
C_{mn} = \langle GS | \hat{c}_m^\dagger \hat{c}_n | GS \rangle = \sum_{\nu > 0} v_{m}^{(\nu)_*} v_{n}^{(\nu)}
\]

Correlation matrix

Eigenvalues

\[
\lambda_j
\]

Entanglement energies, eigvals of H_{ent}

\[
\zeta_j = \ln \frac{1 - \lambda_j}{\lambda_j}
\]

Obtain Schmidt coefficients considering the full RDM
Trace index and spectral flow in the entanglement spectrum of topological insulators

A. Alexandradinata, Taylor L. Hughes, and B. Andrei Bernevig

1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2Department of Physics, University of Illinois, 1110 West Green St, Urbana, Illinois 61801, USA

(Received 14 August 2011; published 3 November 2011)

(Developing an idea by Li & Haldane, PRL 2008)

Talk at the Perimeter Institute, full video online
Insulators: low energy states have to be edge states

Insulator: Band insulator, noninteracting electrons on a lattice
- Strongly correlated (Mott Insulator)

\[\hat{H} = \sum_j \sum_l \hat{c}_j^\dagger H_{j,j+l} \hat{c}_{j+l} \]

single-electron Hamiltonian \(H \)

edge region: low energy electrons confined here

translation invariant bulk

\(H(k) \)

\(\psi_k(x) \) plane waves

\(\psi(x) \) have evanescent tails into the bulk

Conduction band, Unoccupied
Gap, Edge states
Valence band, Occupied

Energy

Edge states: defined by position and energy window: high energy states merge with bulk

perturbations change wavefunction energy
Topological Insulators have robust edge states

- Magnetic field: electrons cannot penetrate
- One-way (Chiral) edge states
- Perfect conduction
- Resist localization (Robustness)
- Number predicted by bulk Chern number
Edge States show up in Edge State Dispersion Relation

- Half BHZ model (Bernevig, Hughes, Zhang, 2006)

\[
H(k_x) = \sum_{y=1}^{N} \left[(\Delta + \cos k_x) \sigma_z + A \sin k_x \sigma_x \right] \otimes |y\rangle \langle y|
\]

\[
+ \frac{1}{2} \sum_{y=1}^{N-1} (\sigma_z - iA\sigma_y) \otimes |y+1\rangle \langle y| + (\sigma_z + iA\sigma_y) \otimes |y\rangle \langle y+1|
\]

![Graph of edge states and momentum distribution](image_url)
Edge States exist in Time Reversal Symmetric systems

- BHZ model (Bernevig, Hughes, Zhang, 2006)

\[H_{BHZ}(k) = [(\Delta + \cos k_x + \cos k_y)\sigma_z + A\sin k_y\sigma_y]\tau_0 + A\sin k_x\sigma_x\tau_z \]

- No scattering allowed between a mode and its time reversed partner (Kramers degeneracy)
Part of the big family tree of Topological Band Insulators

<table>
<thead>
<tr>
<th>AZ</th>
<th>T</th>
<th>C</th>
<th>S</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 Z 0 0 Z 0 Z 0</td>
</tr>
<tr>
<td>AIII</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Z 0 Z 0 Z 0 Z 0</td>
</tr>
<tr>
<td>AI</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0 0 0 Z 0 Z_2 Z_2 Z</td>
</tr>
<tr>
<td>BDI</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Z 0 0 0 Z 0 Z_2 Z_2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Z_2 Z 0 0 0 Z 0 Z_2</td>
</tr>
<tr>
<td>DIII</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>Z_2 Z_2 Z 0 0 0 Z 0</td>
</tr>
<tr>
<td>All</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0 Z_2 Z_2 Z 0 0 0 Z</td>
</tr>
<tr>
<td>CII</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>Z 0 Z_2 Z_2 Z 0 0 0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0 Z 0 Z_2 Z_2 Z 0 0</td>
</tr>
<tr>
<td>CI</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0 0 Z 0 Z_2 Z_2 Z 0</td>
</tr>
</tbody>
</table>

Different dimensions, symmetry classes connected by dimensional reduction (Schnyder et al, 2009; Teo & Kane, 2010)
Entanglement Cut in Topological Insulators
Edge modes appear in the entanglement spectrum

- **Trivial insulator (C=0):**
 - Fully occupied band, little entanglement
 - Adiabatically connected to atomic limit
 - Gap in Entanglement Spectrum

- **Chern insulator (C=1):**
 - Fully occupied band, why entanglement?
 - No adiabatic connection to atomic limit
 - Gapless Entanglement Spectrum
 - Spectral Flow
Edge modes in the full many-body entanglement spectrum

- **Trivial insulator (C=0):**
 - Gapped Full Entanglement Spectrum

- **Chern insulator (C=1):**
 - Gapless Full Entanglement Spectrum
 - Reconstruct Edge mode by counting degeneracies
Trace Index $= \text{Tr}(C(k))$ detects Chern number
Trace Index detects Chern number with disorder

- Alternative to other methods for disorder:
 - Noncommutative Chern number (Prodan, Hughes, Bernevig, PRL 2010)

 \[C = 2\pi i \sum_{\alpha} \langle 0, \alpha | \{ -i[\hat{\chi}_1, P], -i[\hat{\chi}_2, P] \} | 0, \alpha \rangle \]

- Scattering Matrix Winding number (Fulga, Hassler, Akhmerov, PRB 2012)
Topological Order and Entanglement

Not the same as Topological Insulators!
Topological Order = Robust Ground state degeneracy on a torus

Example: Toric Code [Kitaev, Ann Phys, 2006]

\[A_v = \prod_{i \in v} \sigma_i^x, \quad B_p = \prod_{i \in p} \sigma_i^z. \]

\[H_T = -J_e \sum_v A_v - J_m \sum_p B_p \]

Strongly correlated Ground State

String operators along great circles commute with \(H \)

Degeneracy robust against local operations
Long Range Entanglement detects/defines Topological Order

Topological Entanglement Entropy

\[S(A) = \alpha l - \gamma + \ldots \]

Numerics using DMRG in [Jiang, Wang, Balents, NatPhys 2012]

Robustness against Stochastic Local Unitary operations

String operators along great circles commute with H

Degeneracy robust against local operations