QCD on the lattice

S. Katz and F Pittler et al

E6tvos Lorand University
Budapest, Hungary

May 29, 2014

Introduction

Quantum Chromodynamics (QCD)

@ Field theoretic description of the strong interaction

@ Theory of quarks and gluons

@ They are the building blocks of hadronic matter, like proton
@ They come in three different colors

@ Three quarks are bound together to form a proton

Introduction

Basic properties of QCD

@ Free quark cannot be observed

@ The interaction at large distances is very strong

_ PowerDensty(Wim®)

Distance (m)
[

" Distance (m)

Meson in QCD Dipole field in electrodynamics
http://www.physics.adelaide.edu.au

@ Flux tube between the two quarks, the energy density is
constant in the tube!

Basic properties of QCD

Asymptotic freedom

@ In high energy hadronic collisions the interaction between
the quarks is small

@ At high energy the quarks and gluons form a so-called
quark gluon plasma

Transition between the two forms of strongly interacting matter

Lattice QCD

@ Discretize the space-time on a hypercubic Lattice
. v (x)
@ Quarks: complex 3D vectors on the sites: w(x)= | w2 (x)

@ Gluons: SU(3) matrices on the links u, (x)
@ Finite number of degrees of freedom : stat. mech. system.

@ Computation of observables O (U, v, w) by taking into
account all possible configurations:

%/gduu (xX)dy (x)diF (x)

O(U, v, I[_/)eXp(—S(U, v, ll_,))

S contains the form of the
interaction

Monte-Carlo methods

Monte-Carlo integration and Importance sampling

@ In a typical simulation number of integrations scales with
the volume: Ns ~ O(50),N; ~ O(100) — V ~ O(107)

@ Direct evaluation is unfeasible

Monte Carlo methods and importance sampling

@ Selecting points randomly in the configuration space
@ Average O over these configurations with weight P (U)

@ Problem: Most configurations will have small weight

@ Solution: Sampling the
configurations with P (U).

zle all config O()

Parallelization

Parallel improvement

@ Even in this case the problem is computationally
demanding

@ Today’s trend: Computing using many cores

Locality Translational invariance

@ All field theoretic models @ We have to do the same
have this property operation on all sites
@ Common task: Computing nto | Uatd) mepks

plaquet'[es) ey O AU i)
P(x) = Uy (x) Uy (x +) Uf (x +v) U (x)

@ Communication only between neighbors

Lattice QCD on the GPU

@ We have a lattice QCD code in CUDA
@ Each site is processed by one cuda thread

@ Global sum is needed in

Y, P

xe all sites

winy="Y vx)xx

xe all sites

Parallelization

Graphical cards at the E6tvos Lorand University

Nvidia 670 Kepler architecture

@ 1344 cores
@ 980 MHz clock speed
@ 2048 MB memory

e 192 € mem. bandwidth

o 3.9 7™ peak performance

@ 250 % max. performance with our
code

Parallelization

Graphical cards at the E6tvos Lorand University

AL AL AAALALALL LA

P22 E GPU cluster
e
PILIIIIIILILILI? o 176 nodes
i
R

LAAAAAAAALAALLLLLA @ 352 GPUs: GTX 670 and GTX 470
VOIIIIIIIIIIIVIY @ 387072 cores
IIIIIIIIIIIIII99 o 1.1 PP peak performance

VIIIIIIVIIIVII99Y o 78 TP max performance with our
code

Parallelization

GPU cluster at the E6tvos Lorand University

Parallelization

Computations in Lattice QCD

Dirac operator : D(U)+m

@ Fermionic action is bilinear: Sy =y (D(U)+ m)y
@ D(U) is a large and sparse matrix

@ We need to compute D~y for many x

@ Conjugate gradient algorithm (CGQG)

@ The large number of small eigenvalues slows the
convergence of the CG

@ Solution: Explicitly determine and deflate the low modes

@ Krylov-Schur algorithm

Krylov-Schur algorithm
Krylov-Schur algorithm

@ Sparse eigenvalue solver, only needs a multiplication
routine

@ Determines only a part of the full spectrum

@ From a random vector v we generate a Krylov subspace
(7):
v,Dv,D?v---D™v m<n

@ Using Gram Schmidt orthogonalization (GSO) we obtain
the decomposition:

V[n,m] % +H[m+1]

@ H is the projection of D on 7.

D[n,n] Vin,m] =

@ H contains the best approximation of the eigenvalues of D
in 7: Hy; = 6;y; — Restore approx. eigenv. of D from y;

Krylov-Schur algorithm
Krylov-Schur continued

@ Problem: m vectors (U) have to be stored

@ m has to be as small as possible — slow convergence

e Restart: Truncate to order p and extend to order m

Parallelization

o Most of the time is spent on Gram Schmidt Orthogonalization

o Parallelize the linear algebra: 4 ‘
m Multiplication by D
@ Multiplication of a vector with scalar =Eigenproblem of H

@ Addition of two vectors

Linear Algebra

Krylov-Schur algorithm

CUDA implementation

Vector plus scalar times vector kernel routine

__global__ void kernel latvec_Vp_StV (int par,
handler v0, double s, handler vl)

//Get the index of the vector component
int tid= blockIdx.xxblockDim.x+threadIdx.x;
if (tid>=CONST (nsites) [par]) return;
int i= tid + CONST (oddoffs) [par];

//Move the components to the registers
double2 rvecO[3], rvecl[3];

d_read_fvec (rvecO, v0.pt+i, v0.stride);
d_read_fvec(rvecl, vl.pt+i, vl.stride);
//Do the arithmetic

FVEC_V_VpStV (rvecO, rvecO, s, rvecl);
//Write back to the global memory
d_write_fvec (vO.pt+i, rvecO, vO.stride);

Krylov-Schur algorithm

Performance of the parallel CPU and GPU

implementation
5000 ‘ ‘
@0 GPU implementation
2000 @@ CPU parallel implementation

w
(=3
(=3
[=)

2000 [~

Time (sec)

Krylov-Schur algorithm
Summary

@ We presented the GPU cluster at the E6tvos Lorand
University

@ We showed one piece of our code: The Krylov-Schur
algorithm

@ Further code optimization

@ Implementing the domain decomposition based multigrid
method for the inverter

@ Thank you for your attention!

	Introduction
	Monte-Carlo methods
	Parallelization
	Krylov-Schur algorithm

