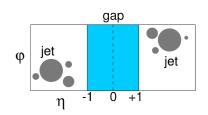
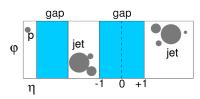
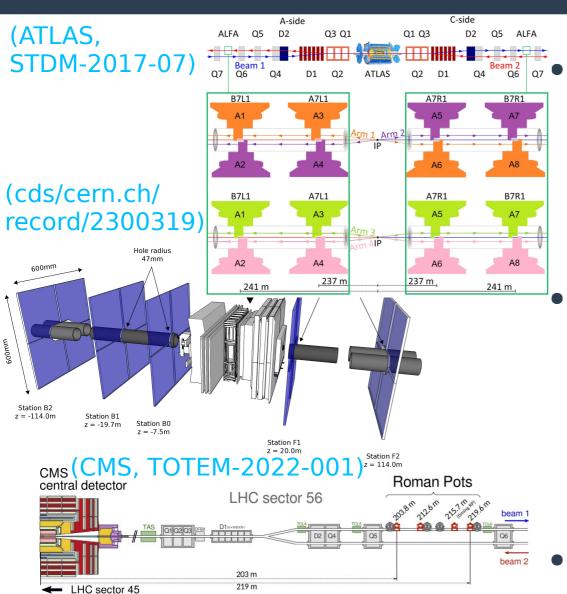
Diffraction, elastic scattering at LHC


Anna Fehérkuti (Eötvös Loránd University, Wigner Research Centre for Physics) on behalf of ATLAS, CMS and LHCb Collaborations


December 18 2023

Diffraction at the LHC

- Jet-gap-jet events
- Photon-induced processes:
 - WW / ZZ (quartic anomalous couplings)
 - $\gamma \gamma \rightarrow \gamma \gamma$
 - Axion-like particles (ALPs)
 - Quartic photon anomalous couplings
 - $-Z/\gamma+X$
 - Central exclusive production (CEP) of $t\bar{t}$
 - Coherent charmonium production in ultra peripheral PbPb collisions (PbPb UPC)
- gap gap

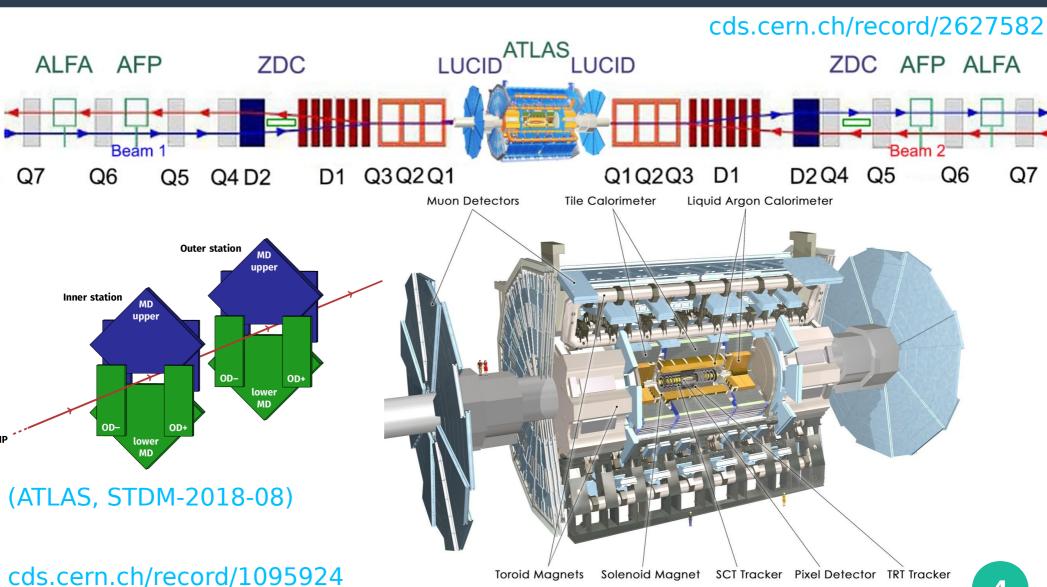


- Pion pair production
- Total cross section measurements
 - *Q*-parameter
 - Nuclear slope

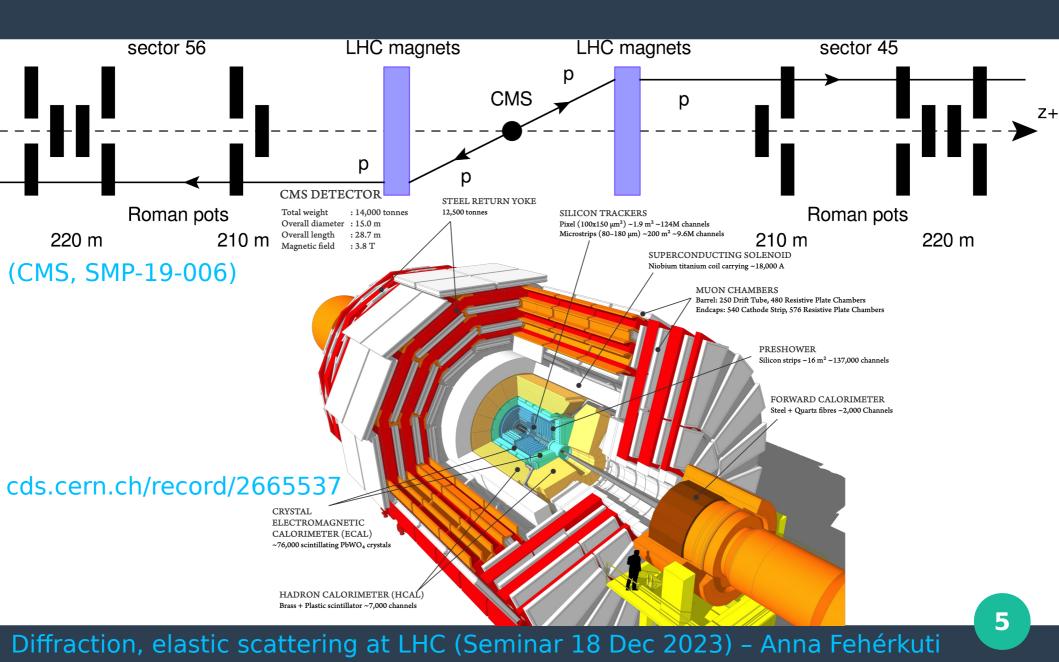
Generally pp, $\sqrt{s} = 13 \text{ TeV}$ (indicated, where different)

Experiments in scope

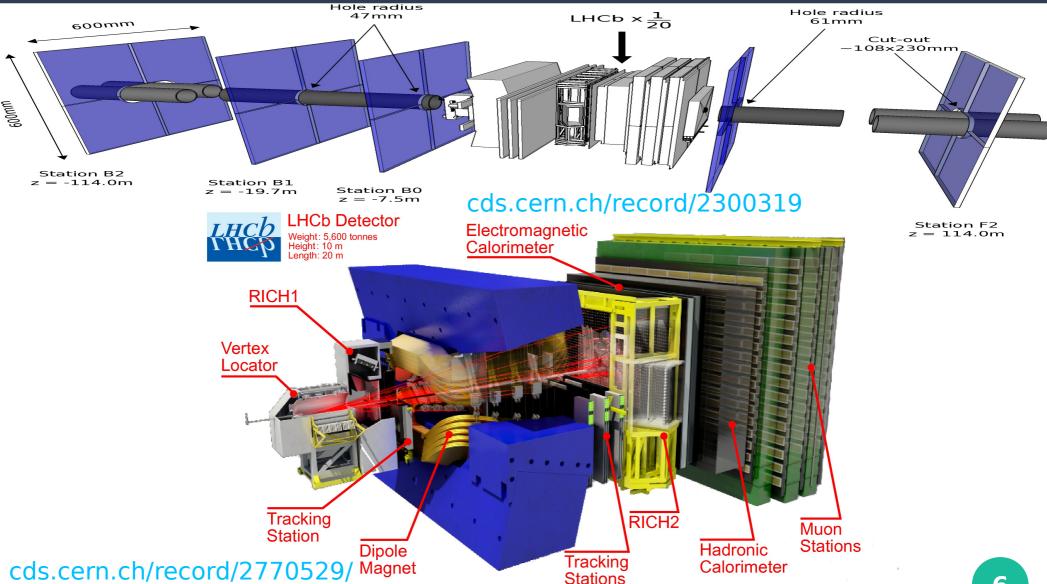
ATLAS


- ATLAS ForwardDetectors (AFP)
- ALFA

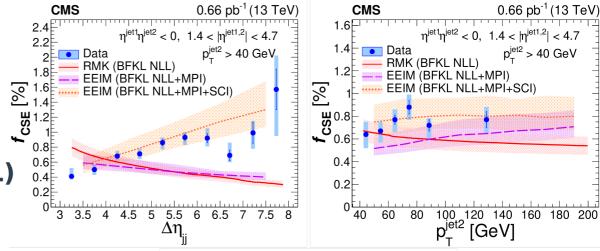
CMS

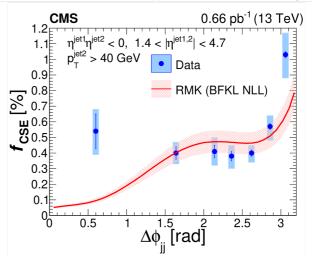

- Roman pots (RPs)
 - TOTEM
 - Precision Proton
 Spectrometer (PPS)

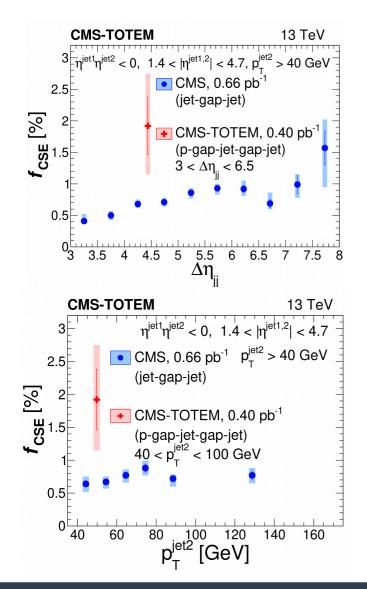
LHCb


Experiments in scope: ATLAS

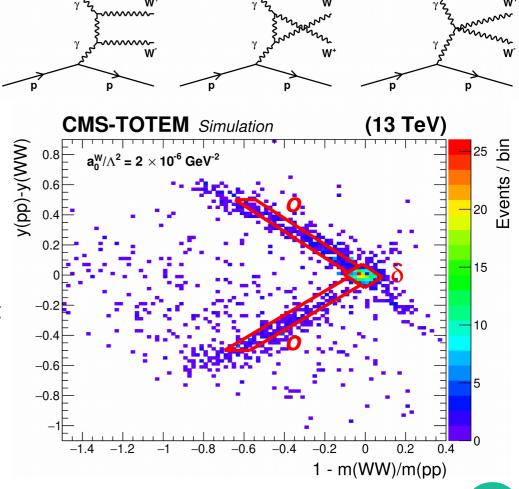
Experiments in scope: CMS

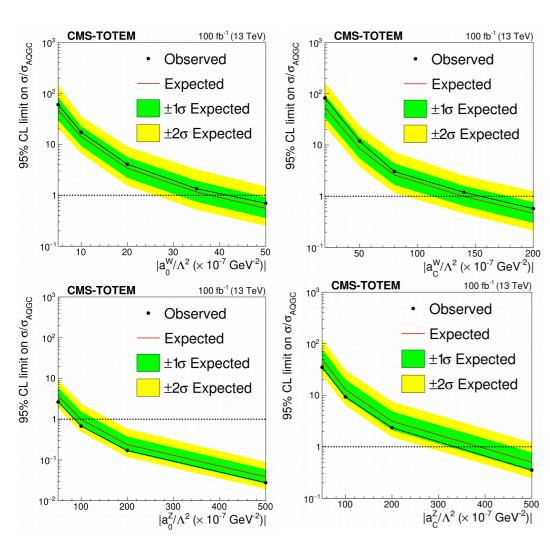



Experiments in scope: LHCb


Jet-gap-jet events in diffraction I.

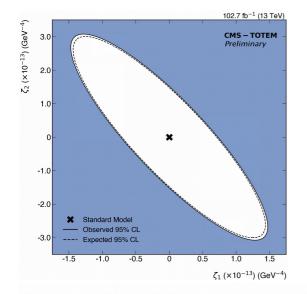
- Searching for rapidity gap between the two jets:
 - $p_T^{\text{jet}} > 40 \text{ GeV}$, $\eta^{\text{jet1}}\eta^{\text{jet2}} < 0$, $1.4 < |\eta^{\text{jet}}| < 4.7$
- Exchange of a Balitsky-Fadin-Kuraev-Lipatov (BFKL) Pomeron between jets:
 - Hard color-singlet exchange
 - Two-gluon exchange in order to neutralize color flow
- Comparison with BFKL NLL (with LO impact factors) as implemented in PYTHIA
 - Fraction of jet-gap-jet events: $f_{CSE} = (N^{\#track < 3} - N^{\#track < 3}_{ULE}) / N^{tot}_{dijet}$
- Soft color interaction based models

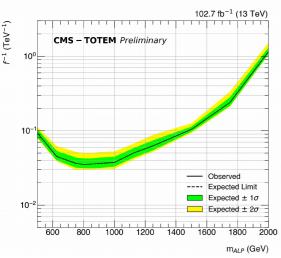

Jet-gap-jet events in diffraction II.


- Powerful test of BFKL resummation
- Subsample requesting in addition at least one intact proton on either side of CMS: proton-gap-jet-gap-jet
- First observation (CMS): 11 events
 - Minimum one proton tagged with $\sim 0.7 \text{ pb}^{-1}$
- Very clean events
 - Since mutiple-parton interactions are suppressed
 - Might be the "ideal" way to probe BFKL
- f_{CSE} extracted: ~3x larger than that of in the inclusive case

Exclusive production of W/Z pairs I.

- Search with fully hadronic decays
 - 2 jets back-to-back ($|1 \phi_{jj}/\pi| < 0.01$ R = 0.8, jet $p_T > 200$ GeV, 1126 GeV $< m_{jj}$
- Signal region defined by the correlation between the WW / ZZ system (invariant mass & rapidity) and tagged proton information
 - If WW / ZZ produced with large boost (many BSM scenarios): merged (single-area) jet
 - Highest branching fraction for fully hadronic decays, but without proton tagging: inaccessible mode (large QCD background, pileup)

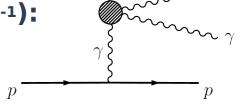



Exclusive production of W/Z pairs II.

- Limits on SM cross section for $0.04 < \xi$ < 0.2, m(VV) > 1 TeV:
 - (Fractional momentum loss: $\xi = \Delta p / p$ = horizontal displacement / horizontal dispersion)
 - $-\sigma_{ww}$ < 67 fb
 - $-\sigma_{77} < 43 \text{ fb}$
- New limits on quartic anomalous couplings:
 - $-a_0W / \Lambda^2 < 4.3 \cdot 10^{-6} \text{ GeV}^{-2}$
 - $a_{c}^{W} / \Lambda^{2} < 1.6 \cdot 10^{-5} \text{ GeV}^{-2}$
 - $-a_0^z/\Lambda^2 < 0.9 \cdot 10^{-5} \text{ GeV}^{-2}$
 - $-a_0^2/\Lambda^2 < 4.0 \cdot 10^{-5} \text{ GeV}^{-2}$
- This means better constrains wrt analyses without proton tagging for the W case
- First obtained values in Z case from the exclusive channel

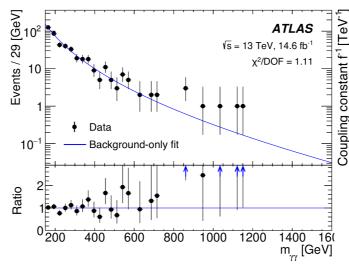
Exclusive γγ production at high mass with tagged protons - preliminary updates

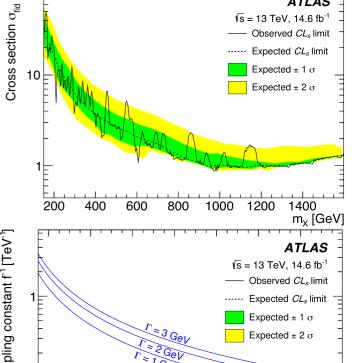
- Search for exclusive diphoton production:
 - Back-to-back ($|1 \phi_{yy}/\pi| < 0.005$ or 0.0025), high diphoton mass ($m_{yy} > 350$ GeV), matching in rapidity and mass between diphoton and proton information
- First limit on standard model light-by-light production cross section: 4.4 fb
- Previous limits on quartic photon anomalous couplings (~10 fb⁻¹):


$$-|\xi_1| < 2.9 \cdot 10^{-13} \text{ GeV}^{-4} (\xi_2 = 0)$$

$$-|\zeta_2| < 6.0 \cdot 10^{-13} \text{ GeV}^{-4} (\zeta_1 = 0)$$

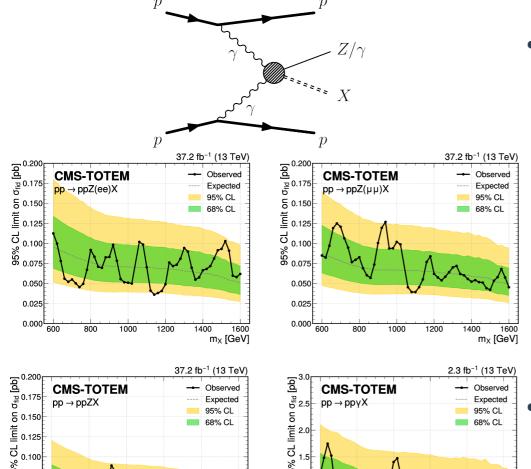
$$-|\zeta_1| < 7.3 \cdot 10^{-14} \text{ GeV}^{-4} (\zeta_2 = 0)$$


$$-|\zeta_2| < 1.5 \cdot 10^{-14} \text{ GeV}^{-4} (\zeta_1 = 0)$$



 Limits on axion-like particles (ALPs) at high mass

Axion-like particles with AFP


- Search for exclusive diphoton production:
 - Proton tagging
 - $-150 \text{ GeV} < m_{yy} < 1600 \text{ GeV}$
- Upper limit on ALP coupling constant: 0.04-0.09 TeV-1
- Most significant excess ($m_x = 454 \text{ GeV}$):
 - Local significance of 2.51σ
 - Global *p*-value for the null hypothesis0.5

m_x [GeV]

$Z/\gamma + X$ production

600

800

1000

1200

% % 6 0.075

0.025

800

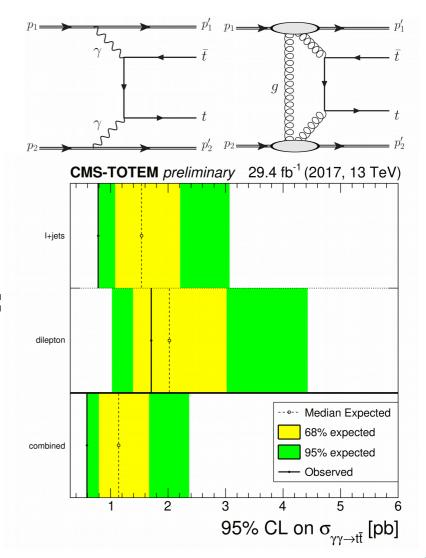
1000

1200

1400

1600

- Due to proton tagging the total mass can be reconstructed, which allows obtaining mass of Z+X
 - 0.6 TeV $< m_\chi < 1.6$ TeV
 - Using missing mass distribution the search becomes modelindependent (X does not have to be reconstructed)
- Upper limits on the cross section obtained:
 - In the Z case 0.025-0.089 pb
 - In the γ case 0.47-1.75 pb

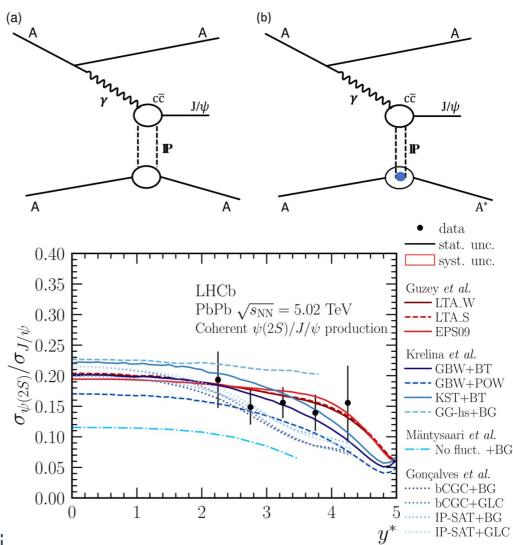

1400

1600

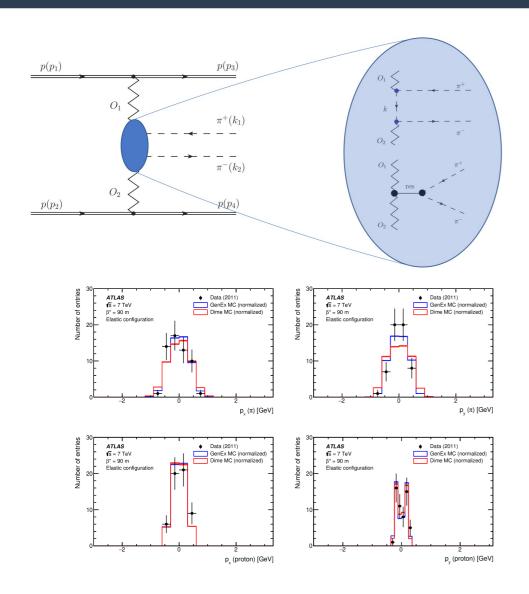
CEP of $t\bar{t}$ with tagged protons

• tt searched either in:

- Dilepton channel
- Lepton+jets (R = 0.4) decay mode (only b-jets, identified with DeepCSV algorithm)
- Combined results
- Multivariate Analysis (MVA):
 - Boosted Decision Tree (BDT)
 algorithm used to enhance signal
 content
- Upper bound on production cross-section: 0.59 pb



Coherent charmonium production in UPC (PbPb, √s_{NN} = 5.02 TeV)


Searching for coherent
 (a) production:

- In
$$2.0 < y^* < 4.5$$

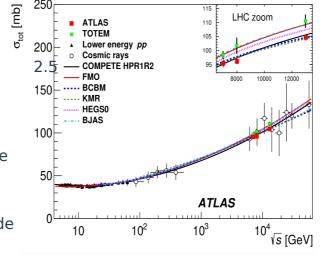
- Cross-sections of coherent production in PbPb, also compared to theoretical predictions:
 - $-\sigma_{J/\psi}^{coh} = 5.965 \pm 0.059 \pm 0.232 \pm 0.262$ mb (most precise)
 - $-\sigma_{\psi}^{\text{coh}} = 0.923 \pm 0.086 \pm 0.028 \pm 0.040 \text{ mb (first)}$
 - Uncertainties: stat, syst, lumi

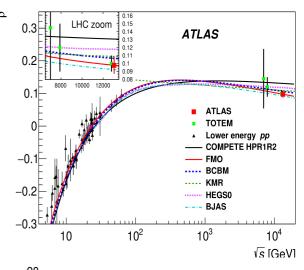
Exclusive pion pair production (√s = 7 TeV)

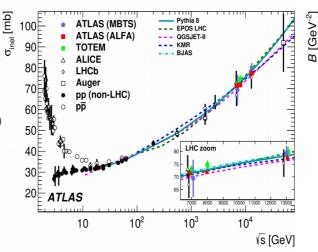
- Search for pions in correlation with protons detected by ALFA
 - First use of proton tagging to measure exclusive hadronic final state
- Cross section determined in two kinematic regions (defined by p^{proton} s & p_T^{pion} s, y^{pion} s and $m_{\pi\pi}$):
 - -4.8 ± 1.0 (stat) $^{+0.3}_{-0.2}$ (syst) μb
 - -9 ± 6 (stat) ± 2 (syst) μb
- Tuning / excluding existing physical models not possible (limited statistical precision)
 - Used ones (GenEx, Dime) provide preliminary theoretical estimates

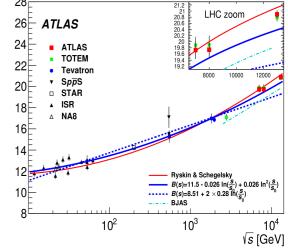
Total cross section measurements with ALFA I.

Measuring elastic cross section in:

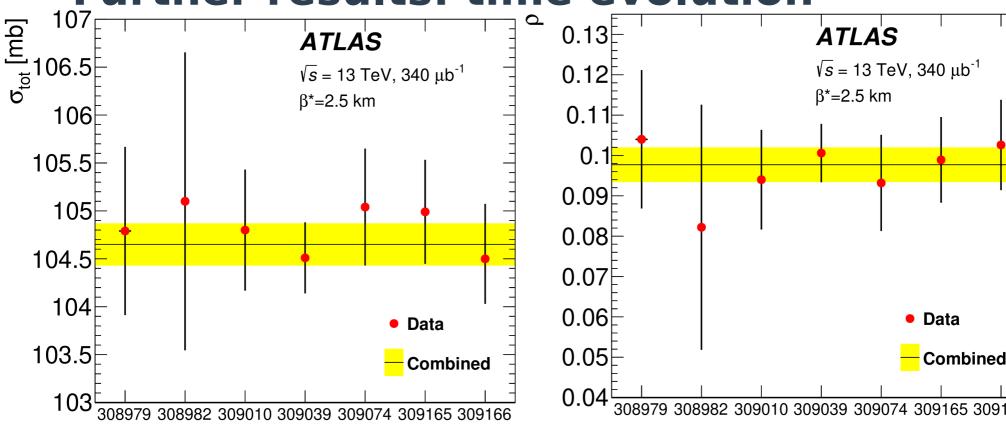

- Special run: β * = 2.5 km
- Differentially in t Mandelstam:
 - $\cdot 10^{-4} \text{ GeV}^2 < -t < 0.46 \text{ GeV}^2$


Optical theorem:


- Hadronic component of σ_{tot} connected to the imaginary part of the scattering amplitude in the forward direction: $\sigma_{tot} = 4\pi \ \text{Im}[f_{el}(t)]_{t\to 0}$
- ϱ -parameter: $\varrho = \{\text{Re}[f_{el}(t)]_{t\to 0} / \text{Im}[f_{el}(t)]\}_{t\to 0}$
- Nuclear slope: purely strong-interaction amplitude $f_N = (\varrho + i)\sigma_{tot}/\hbar c \exp[(-B|t| C|t|^2 D|t|^3)/2]$


• (Data-driven) fit on σ_{elast} distribution (with different parameterizations of *t*-dependence) leads to obtain:

- $-\sigma_{tot}(pp \to X) = 104.7 \pm 1.1 \text{ mb}$
 - 5.8 mb lower than TOTEM: 2.2 σ tension: unresolved (methodology lumi-dep @ ALFA vs lumi-indep @ TOTEM)
- $o = 0.098 \pm 0.011$
 - Mostly sensitive to the shape of the elastic spectrum: agrees between TOTEM & ALFA
- Nuclear slope parameters:
 - $B = 21.14 \pm 0.13 \text{ GeV}^{-2}$
 - $C = -6.7 \pm 2.2 \text{ GeV}^{-4}$
 - $D = 17.4 \pm 7.8 \text{ GeV}^{-6}$



Total cross section measurements with ALFA II.

Further results: time evolution

Run number

Run number

Conclusion

- Jet-gap-jet events seem to be a powerful test of BFKL resummation even if one proton has been tagged
- Using LHC as a $\gamma\gamma$ collider very clean events can be obtained, if we measure intact protons and produced particles in CMS/ATLAS
- Proton tagging draws us to higher selection efficiency even in hadronic production processes
- Search for exclusive $\gamma\gamma$, ZZ, WW, $t\bar{t}$ leads to best sensitivities to quartic anomalous couplings as well as to the productions of ALPs at high mass
- Even the ratio (determined for the first time) of the cross-sections between coherent J/ ψ and ψ (25) production found to be compatible with theoretical models
- The commonly accepted models are in agreement with only one of the σ_{tot} or ϱ measurements, while a simultaneous fit was found to give a good description of both quantities
- It is still a question if the low value of ϱ can be attributed to the Odderon or other effects in strong interactions

Thank You for Your attention!

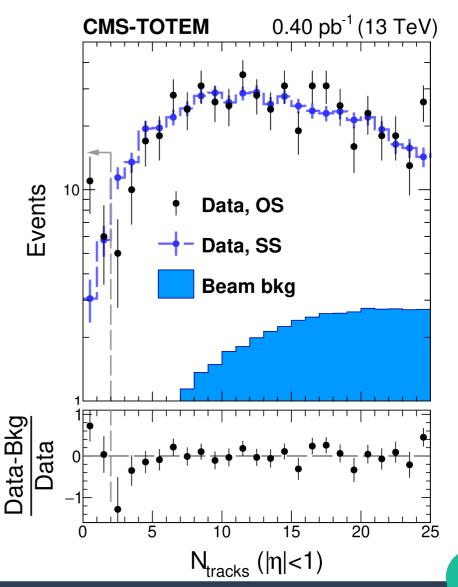
Questions are welcomed:)

Backups

Jet-gap-jet events in diffraction I.

Data sample:

- − 2015, pp, \sqrt{s} = 13 TeV, β* = 90 m, PU ~ 0.05-0.1
- Integrated luminosity: 0.4 pb⁻¹
- Unprescaled dijet trigger:
 - At least 2 leading jets: both with $p_T > 32$ GeV, $|\eta| < 5$
 - 85% efficient for p_T = 40 GeV
 - Fully efficient at $p_T > 55$ GeV
 - Efficiency obtained from zero bias (ZB) using random trigger in nonempty bunch crossings
 - Efficiency effects mostly cancel in $f_{CSE} \rightarrow$ no correction applied

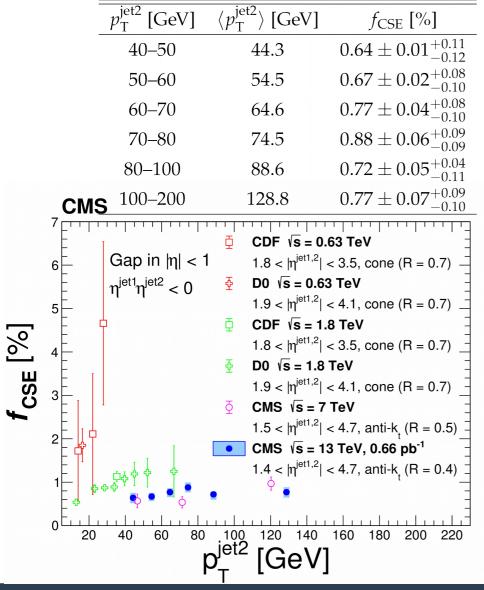

Jet-gap-jet events in diffraction II.

- Event selection: 341 events in sector 45, 336 events in sector 56
 - Dijet event selection:
 - $p_T > 40$ GeV, $1.4 < |\eta| < 4.7$, $\eta^{\text{jet1}}\eta^{\text{jet2}} < 0$
 - Anti- k_T algorithm, R = 0.4
 - Intcat proton selection:
 - At least 1 proton in either sector 45 or 56 RP stations
 - Proton track crosses at least 2 overlapping RP units (ensuring reconstruction quality)
 - RP acceptance: ξ < 0.2, -4 < t < -0.025 GeV²
 - Fiducial selection (while beam position at x(RP) = y(RP) = 0):
 - Vertical RPs: 8 < |y(RP)| < 30 mm, 0 < |x(RP)| < 20 mm
 - Horizontal RPs: |y(RP)| < 25 mm, 7 < |x(RP)| < 25 mm
 - Particle flow (PF) calculations:
 - $-\xi(PF)$ $\xi(RP)$ < 0 (reconstruction inefficiencies & acceptance limitations)

Jet-gap-jet events in diffraction III.

Background treatment: databased

- Independent sample (same side "SS" jets) of the nominal one (opposite side "OS" jets)
 - Negative binomial distribution (NBD) fit
- Particle multiplicity distribution parametrization
 - Using NBD method estimate the standard diffractive dijet contribution that feature a central gap
- Avoiding model-dependent treatment of underlying event (ULE) activity, hadronization effects, etc. that have impact on the description of particle activity between jets in the MC events
- Separately for jet-gap-jet and protongap-jet-gap-jet events



Jet-gap-jet events in diffraction IV.

Systematic uncertainties:

Source	Jet-gap-jet (%)			Proton-gap-jet-gap-jet (%)
	$\Delta\eta_{ m jj}$	$p_{ m T}^{ m jet2}$	$\Delta\phi_{ m jj}$	
Jet energy scale	1.0-5.0	1.5-6.0	0.5–3.0	0.7
Track quality	6.0 - 8.0	5.4 - 8.0	1.5 - 8.0	8
Charged particle $p_{\rm T}$ threshold	2.0-5.8	1.6 - 4.0	1.1 - 5.8	11
Background subtraction method	4.7 - 15	2–15	12	28
NBD fit parameters	0.8 - 2.6	0.6 - 1.7	0.1 - 0.6	7.0
Functional form of the fit	2 - 7.3	1.4 - 8.0	0.6 - 7.8	11.5
NBD fit interval				12
Calorimeter energy scale				5.0
Horizontal dispersion				6.0
Fiducial selection requirements				2.6
Total	7–23	9–15	12 - 18.5	35

Jet-gap-jet events in diffraction V.

$\Delta\phi_{ m jj}$	$\langle \Delta \phi_{ m jj} angle$	f _{CSE} [%]
0.00-1.00	0.60	$0.54 \pm 0.11^{+0.09}_{-0.10}$
1.00-2.00	1.64	$0.40 \pm 0.04^{+0.06}_{-0.06}$
2.00-2.25	2.14	$0.41 \pm 0.04^{+0.08}_{-0.08}$
2.25-2.50	2.36	$0.38 \pm 0.03^{+0.06}_{-0.07}$
2.50-2.75	2.62	$0.40 \pm 0.02^{+0.05}_{-0.06}$
2.75-3.00	2.86	$0.57 \pm 0.02^{+0.07}_{-0.09}$
3.00-π	3.06	$1.03 \pm 0.02^{+0.14}_{-0.15}$
$\Delta\eta_{ m jj}$	$\langle \Delta \eta_{ m jj} angle$	f _{CSE} [%]
3.0-3.5	3.24	$0.41 \pm 0.02^{+0.11}_{-0.04}$
3.5-4.0	3.75	$0.50 \pm 0.02^{+0.07}_{-0.07}$
4.0-4.5	4.25	$0.68 \pm 0.02^{+0.07}_{-0.06}$
4.5-5.0	4.74	$0.71 \pm 0.03^{+0.06}_{-0.06}$
5.0-5.5	5.24	$0.86 \pm 0.04^{+0.06}_{-0.08}$
5.5-6.0	5.73	$0.93 \pm 0.04^{+0.06}_{-0.09}$
6.0-6.5	6.22	$0.92 \pm 0.06^{+0.11}_{-0.09}$
6.5–7.0	6.71	$0.69 \pm 0.07^{+0.15}_{-0.05}$
7.0-7.5	7.22	$0.99 \pm 0.14^{+0.07}_{-0.15}$
7.5-8.0	7.73	$1.57 \pm 0.27^{+0.35}_{-0.56}$

Exclusive production of W/Z pairs I.

Data sample:

- 2016-2018, pp, \sqrt{s} = 13 TeV
- Integrated luminosity: 100 fb-1
- Signal simulation: LO with FPMC
- Background simulations:
 - Dominant nonexclusive (from QCD multijet): LO, PYTHIA 8.205 (with CP5 tune)
 - W/Z+jet: NLO, MadGraph5_aMC@NLO
 - Top pair production: NLO, POWHEG
 - SM contribution in ZZ/WW considered to be negligible
- Parton showers: PYTHIA
- Detector response:
 - Central CMS: Geant4
 - Forward protons: "direct simulation"

Exclusive production of W/Z pairs II.

Event selection:

- Jet selection:
 - $|\eta| < 2.5$, $p_T > 200$ GeV (choosing the 2 highest), R = 0.8
 - Acoplanarity $|1 \phi_{jj}/\pi| < 0.01$, p_T -ratio < 1.3, $1126 \; \mathrm{GeV} < m_{jj}$
 - 60 < pruned mass < 107 GeV (compatible with W/Z)
 - Subjettiness ratio $\tau_2/\tau_1 < 0.75$
- W/Z selection:
 - summed pruned jet masses $m(j_1) + m(j_2) = 166.6$ GeV differentiating between W/Z
- Proton selection:
 - $\xi > 0.05$
- Proton-jet matching:
 - |1 m(VV)/m(pp)| < 1.0
 - |y(pp) y(VV)| < 0.5

Exclusive production of W/Z pairs III/a.

Number of events	region	$N_{\rm evt}$ (2016)	$N_{\rm evt}$ (2017)	$N_{\rm evt}$ (2018)
Anti-acoplanarity sideband	δ	0.4 ± 0.4	1.6 ± 1.0	11.6 ± 2.6
Anti-pruned mass sideband	δ	0.5 ± 0.2	1.5 ± 0.3	11.3 ± 0.8
Event mixing	δ	0.5 (< 2.2)	$1.8 \ (< 4.2)$	14.3 ± 8.9
Expected signal	δ	1.7	2.2	16.1
$(a_0^{\rm W}/\Lambda^2 = 5 \times 10^{-6} {\rm GeV}^{-2})$				
Expected signal (SM)	δ	0.006	< 0.05	0.03
Anti-acoplanarity sideband	0	1.4 ± 0.9	10.0 ± 3.2	41.4 ± 5.7
Anti-pruned mass sideband	0	2.5 ± 0.8	7.1 ± 1.3	43.0 ± 3.0
Event mixing	0	2.4 ± 1.9	8.4 ± 6.3	49 ± 13
Expected signal	0	1.5	1.7	16.8
$(a_0^{\rm W}/\Lambda^2 = 5 \times 10^{-6} \rm GeV^{-2})$				
Expected signal (SM)	0	0.005	< 0.05	< 0.07

Exclusive production of W/Z pairs III/b.

Number of events	region	$N_{\rm evt}$ (2016)	$N_{\rm evt}$ (2017)	$N_{\rm evt}$ (2018)
Anti-acoplanarity sideband	δ	1.5 ± 1.1	1.6 ± 0.8	14.2 ± 3.0
Anti-pruned mass sideband	δ	0.4 ± 0.2	0.9 ± 0.2	9.9 ± 0.9
Event mixing	δ	0.5 (< 2.1)	1.5 (< 3.6)	11.6 ± 9.4
Expected signal	δ	1.3	1.4	9.0
$(a_0^Z/\Lambda^2 = 1 \times 10^{-5} \text{GeV}^{-2})$				
Anti-acoplanarity sideband	0	1.5 ± 1.1	3.7 ± 1.5	37.4 ± 5.6
Anti-pruned mass sideband	0	2.1 ± 0.8	5.4 ± 1.3	41.7 ± 3.1
Event mixing	0	2.0 ± 1.8	6.3 ± 5.1	42 ± 16
Expected signal	0	1.0	1.6	12.8
$(a_0^{\rm Z}/\Lambda^2 = 1 \times 10^{-5} {\rm GeV}^{-2})$				

Exclusive production of W/Z pairs IV.

Systematic uncertainties:

- Tight matching between protons and jets: 30%
- Jet energy scale: few-10%
- Total efficiency uncertainty per arm: 10% (2016), 2-3% (2017-2018)
- Integrated luminosity: 1.2% (2016), 2.3% (2017), 2.5% (2018)
- Overall uncertainty for PPS data: 1.8%
- Data vs MC (pruned mass and τ_{21}): below 1%
- Background:
 - Normalization (nominal acoplanarity sideband method): 15-20% (2018), >100% (2016)
 - Dependence on the sideband region: few% (2018), 80% (2016)

Exclusive production of W/Z pairs V.

		•	Furth
Coupling	Observed (expected)	Observed (expected) 95% CL upper limit	result
	95% CL upper limit	95% CL upper limit	CSuit
	No clipping	Clipping at 1.4 TeV	conv
$ f_{M,0}/\Lambda^4 $	$66.0 (60.0) \text{TeV}^{-4}$	$79.8 (78.2) \text{TeV}^{-4}$	n of l
$ f_{M,1}/\Lambda^4 $	$245.5 (214.8) \text{TeV}^{-4}$	$306.8 (306.8) \text{TeV}^{-4}$	to di
$ f_{M,2}/\Lambda^4 $	$9.8 (9.0) \text{TeV}^{-4}$	$11.9 (11.8) \text{TeV}^{-4}$	oper
$ f_{M,3}/\Lambda^4 $	$73.0 (64.6) \text{TeV}^{-4}$	$91.3 (92.3) \text{TeV}^{-4}$	(if all
$ f_{M,4}/\Lambda^4 $	$36.0 (32.9) \text{TeV}^{-4}$	$43.5 (42.9) \text{TeV}^{-4}$	one i
$ f_{M,5}/\Lambda^4 $	$67.0 (58.9) \text{TeV}^{-4}$	$83.7 (84.1) \text{TeV}^{-4}$	are z
$ f_{M,7}/\Lambda^4 $	$490.9 (429.6) \text{TeV}^{-4}$	$613.7 (613.7) \text{TeV}^{-4}$	

Further ts:

> versio limits m-8 rators I, but $f_{M.i}$ zero)

Exclusive γγ production at high mass with tagged protons: preliminary updates I.

Data sample (full Run 2 data):

Integrated luminosity: 9.8 fb⁻¹ (2016), 37.2 fb⁻¹ (2017), 55.7 fb⁻¹ (2018)

LbL signal simulation: FPMC

ALP masses: 500-2000 GeV

Background simulations:

- Dominant yy+jets & sub leading ($t\bar{t}$ +j and V+y): NLO, MadGraph5_aMC@NLO (with NNPDF3.0 PDFs at NNLO)
- QCD background estimation (electron and photon enriched QCD sample): PYTHIA 8 (with CP5 ULE tune)

Detector response of CMS: Geant4

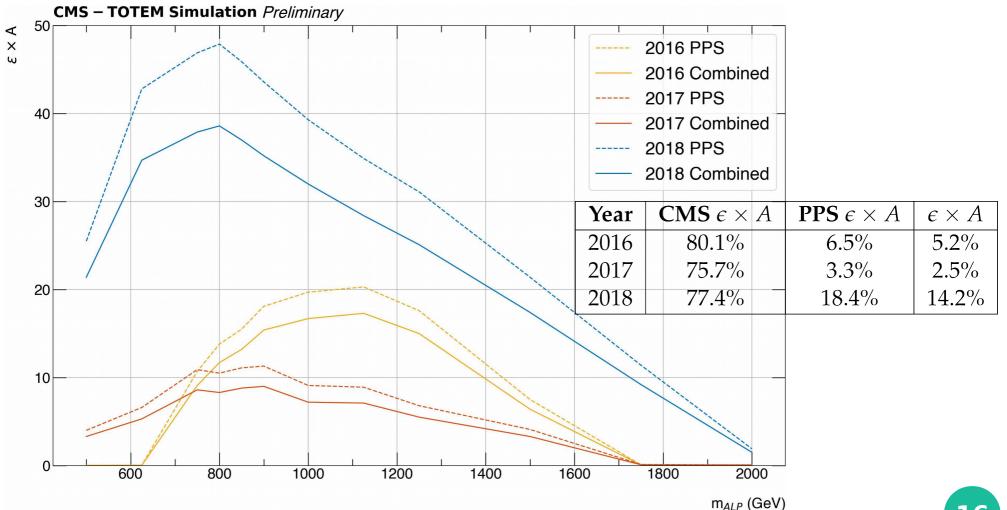
Exclusive γγ production at high mass with tagged protons: preliminary updates II.

Event selection:

Region	Selection
	Double photon HLT
	$p_T^{\gamma} > 75$ (100) GeV for 2016 (2017-2018)
	H/E < 0.10
Preselection	MVA WP90 photon ID with electron veto
	$ \eta^{\gamma} < 2.5$ (transition veto)
	$m_{\gamma\gamma} > 350 \text{ GeV}$
Exclusive selection	a < 0.0025
$\xi\in \operatorname{PPS}$	$0.02 < \xi_{\gamma\gamma}^{\pm} < 0.20$
Asymmetric ξ acceptance	$0.035 < \xi_{PPS} < 0.15$ (0.18) for sector-45 (sector-56)

Exclusive γγ production at high mass with tagged protons: preliminary updates III.

Background estimation (PU as main source):


- Adding protons to the diphoton pair (from same run, LHC crossing-angle)
- Validation from orthogonal set (reversed acoplanarity criterium) or using simulated events
- Total number of background events: 1.103 ± 0.003 (stat)

Systematic uncertainties:

Source	2016	2017	2018
CMS Luminosity	1.2%	2.3%	2.5%
Background estimation	23.3%	25.2%	20.9%
Photon ID scale factors	3.1%	7.0%	2.9%
Rapidity Gap Survival Probability	10%	10%	10%
Particle Showers in PPS	_	_	1.7%

Exclusive yy production at high mass with tagged protons: preliminary updates IV.

Further results: ALP signal efficiency · acceptance

Axion-like particles with AFP I.

Data sample:

- 2017, pp, $\sqrt{s} = 13 \text{ TeV}$
- Integrated luminosity: 14.6 fb-1
- <#interaction/bunch> = 36
- Diphoton trigger: 2 EM calorimeter clusters with E_{τ} > 35 (or 25) GeV
- AFP: at least 3 operational Si planes

Simulated signal: SuperChic 4.02 MC

- ALP mass range: 150-1600 GeV
- ALP diphoton coupling: 0.05 TeV-1
- $|\eta| < 2.4, |y_{yy}| < 2.4, p_T > 20 \text{ GeV}$
- Hadronization of dissociated-proton systems: PYTHIA 8.307
- Detector response: Geant4-based

Axion-like particles with AFP II.

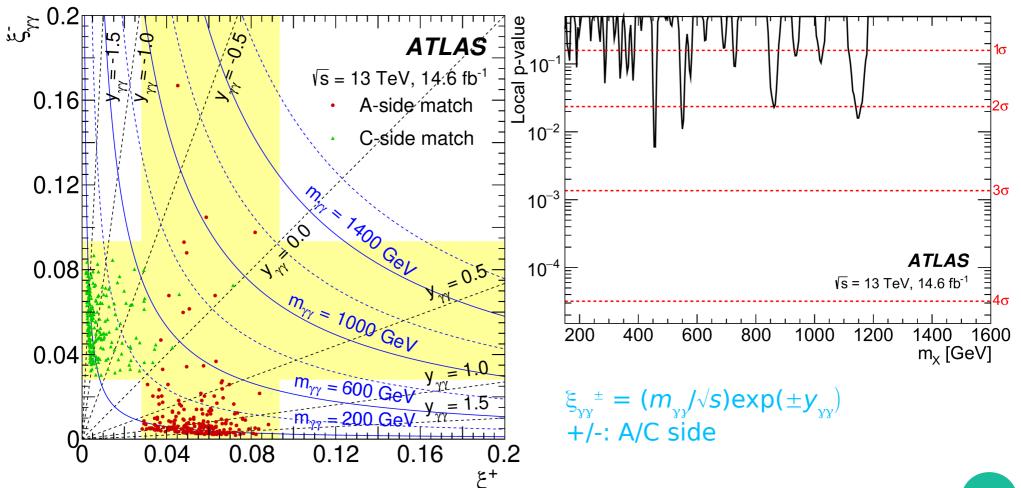
Event selection:

- Calorimeter isolation (cluster R = 0.4) transverse momentum $< 0.022E_T + 2.45$ GeV
- At least 2 photon: $p_T > 40$ GeV, $|\eta| < 2.37$, excluding barrel-to-endcap region $1.37 < |\eta| < 1.52$
- Acoplanarity < 0.01
- At least 1 (A-side / C-side) tagged proton, for which $0.035 < \xi < 0.08$
- $-m_{yy} < 500 \text{ GeV}$

Axion-like particles with AFP III.

Background estimation:

- Dominant from PU: "combinatorical"
 - Fully data-driven method
 - Fit on the mixed-data sample
 - Validation on a new mixed-data sample, orthogonal to the previous one (reversed acoplanarity condition)
- "Single-vertex": MC samples → negligible
 - Photon-induced: SuperChic4.13
 - Diffractive processes: PYTHIA 8.306


Axion-like particles with AFP IV.

Systematic uncertainties:

_	Source	Uncertainty	
31	Signal yield uncertainty		
	Pile-up reweighting	+2.7 % -2.6	
	Luminosity	$\pm 2.4\%$	
	Photon identification efficiency	+1.6 % -1.5	
	Photon isolation efficiency	$\pm 1.9\%$	
	Beam optics between ATLAS central and AFP detectors	+0.8 % -3.4 %	
	AFP global alignment	-304 +10.00%	
	Proton reconstruction efficiency	+3.0 %	
	Showering in the AFP	+0.000 -6.600	
	Background modelling (mass-dependent)	$\pm (0.02-0.7)$ events	
	Signal modelling		
•	Photon energy resolution	+14.1 ₀ / ₀ -4.8	
	Photon energy scale	±(0.5–1.0)%	
	Signal cross-section uncertainty		
•	Soft survival factor (exclusive process)	±2%	
	Soft survival factor (single-dissociative process)	±10%	
	Soft survival factor (double-dissociative process)	±50%	

Axion-like particles with AFP V.

Further results:

$Z/\gamma + X$ production I.

Data sample:

- 2017, pp, $\sqrt{s} = 13 \text{ TeV}$
- Integrated luminosity: 37.2 fb-1
- Trigger either for:
 - Isolated proton
 - Electron/muon pair from Z
 - Prescaled trigger for photon case

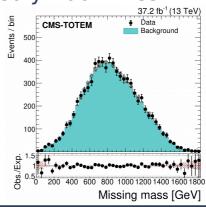
Signal simulation:

- m_{VX} distribution with exponential spectrum ($m_{VX} = m_X + \varepsilon + 100$ GeV)
 - m_X produced in a range
 - ε randomly distributed variable following exponential probability distribution function with decay constant of 0.04 GeV-1
- Detector acceptance as average of corresponding configurations at LHC

Background simulation: for validation (background modelled from data)

- Each process in coincidence with additional minimum-bias events: PYTHIA8 (PU events)
- Drell-Yan (Z+j): NLO, MadGraph5 aMC@NLO v2.2.2 (with FxFx merging)
- Isolated y+j: LO, MadGraph5 aMC@NLO (with MLM merging)
- Top production (single top $tW \& t\bar{t}$): POWHEG
- Diboson production (WW, ZZ, WZ): PYTHIA8 version 8.226
- SD & DD Z production: PYTHIA8 & POMWIG
- Parton shower generator: PYTHIA8
- Detector response: Geant4

$Z/\gamma + X$ production II.

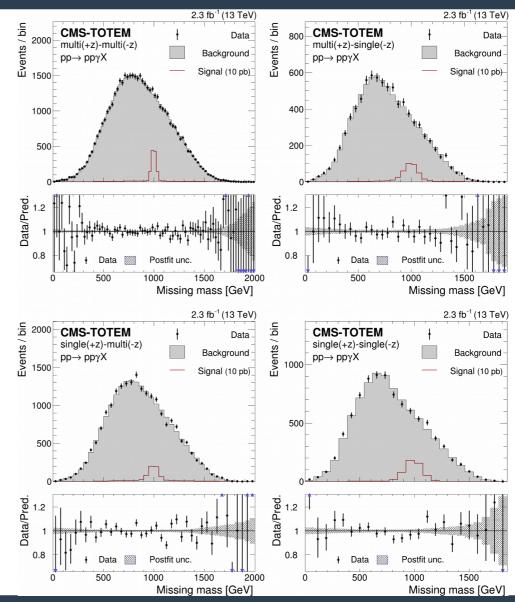

Event selection:

Selection/analysis	$Z ightarrow e^+ e^-/Z ightarrow \mu^+ \mu^-$	γ
	\geq 2 same-flavour leptons (e or μ)	
	opposite electric charge	
Leptons/photons	$p_{\mathrm{T}}(\ell_1) > 30\mathrm{GeV}$, $ \eta(\ell_1) < 2.4$	1γ within $ \eta(\gamma) < 1.44$
	$p_{\mathrm{T}}(\ell_2) > 20\mathrm{GeV}$, $ \eta(\ell_2) < 2.4$	
	$ m(\ell_1,\ell_2) - m_Z < 10\text{GeV}$	
Boson p_{T}	$p_{\mathrm{T}}(\mathrm{Z}) > 40\mathrm{GeV}$	$p_{\mathrm{T}}(\gamma) > 95\mathrm{GeV}$
Protons	$0.02 < \xi_+^{ m gen} < 0.16$ and	$d 0.03 < \xi_{-}^{\text{gen}} < 0.18$

$Z/\gamma + X$ production III.

Background estimation:

- Sources:
 - Inclusive SM $(Z+j/\gamma+j)$ & 2 protons from PU: "combinatorical"
 - Single diffractive (SD) & 1 proton from PU
 - Double diffractive (DD): assumed to be negligible
 - Exclusive SM ($\gamma\gamma \rightarrow II$): assumed to be negligible
 - Signal-induced background (1/2 protons escaped)
- Event mixing (single & double) on control sample orthogonal to the signal one $(p_7 < 10 \text{ GeV})$:
 - Replacing 1/2 proton from random event, repeatedly 100 times
 - Correctly reproduces combinatorical background
 - Good approximation of SD case
- Twofold validation:
 - MC
 - Control sample ($e\mu$)


$Z/\gamma + X$ production IV.

Systematic uncertainties:

- Incorporated as nuisance parameters in profile likelihood fit
- Assumed to be uncorrelated between signal and background shapes or categories
- Sources:
 - PU proton spectra (mostly affects background): 4%
 - SD: 2%
 - CT-PPS efficiency: 2-5% (depending on event category)
 - Time dependence (signal): 1%
 - p_z spectrum: < 1%
 - Selection efficiency: 3%
 - Integrated luminosity: 2.3%
 - Limited event count: < 1%

$Z/\gamma + X$ production V.

Further results:

CEP of $t\bar{t}$ with tagged protons I.

Data sample:

- 2017, pp, $\sqrt{s} = 13 \text{ TeV}$
- Integrated luminosity: 29.4 fb-1

Signal simulation:

- FPMC (with equivalent photon approximation: EPA)
 - $0.02 < \xi < 0.2$
- Top decays (vetoing fully hadronic decays): MadSpin

Background simulation:

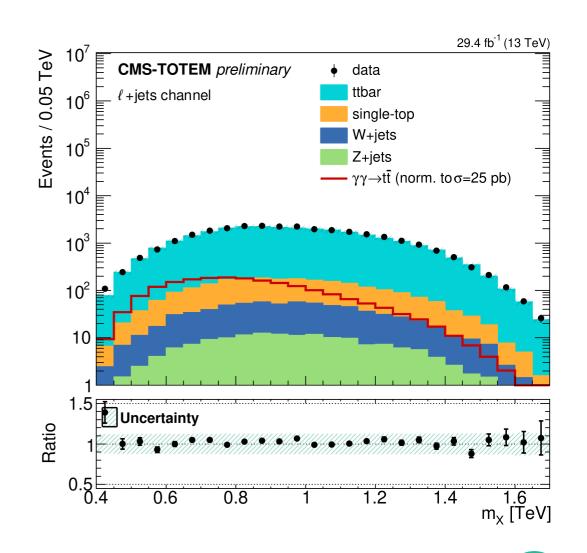
- Dominant inclusive $t\bar{t}$ & 2 PU protons: NLO, POWHEG v2.0
 - Cross section scaled to best theoretical prediction (NNLO): 832 pb
- Single top (tW): NNLO
- V+j, VV, Drell-Yan (DY)
- Parton showering and hadronization: PYTHIA8 (with CP5 ULE tune, NNPDF3.1 NNLO PDFs)
- Detector response: Geant4

CEP of $t\bar{t}$ with tagged protons II.

Event selection:

- Multi-RP proton track in both arms
- lepton+jets:
 - Exactly 1 lepton satisfying: 30 GeV $< p_{\tau^{lepton}}$, $|\eta| < 2.1$ (electrons) or 2.4 (muons)
 - 25 GeV $< p_{T^{jet}}$, $|\eta| < 2.4$, R = 0.4
 - At least 2 jets b-tagged
 - At least 2 jets failing b-tagging

- Dilepton:

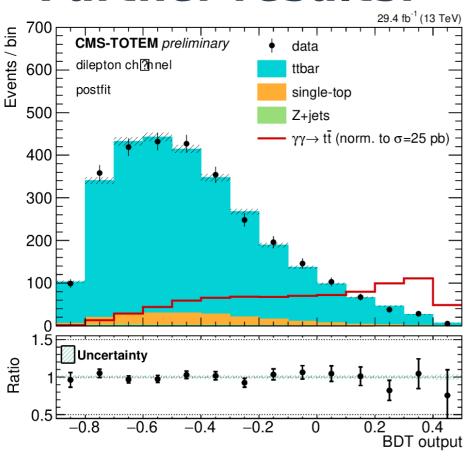

- At least 2 charged leptons:
 - At least 1: 30 GeV $< p_{\tau}$, $|\eta| < 2.1$
 - Highest- p_{τ} candidates: opposite charge
 - Dilepton system: 20 GeV $< M_{\parallel}$
 - Same-flavour dilepton system outside of Z peak range: $M_{\parallel} < 76$ GeV or 106 GeV $< M_{\parallel}$
- At least 2 b-tagged jets satisfying: 30 GeV $< p_{T}^{jet}$, $|\eta| < 2.4$, R = 0.4

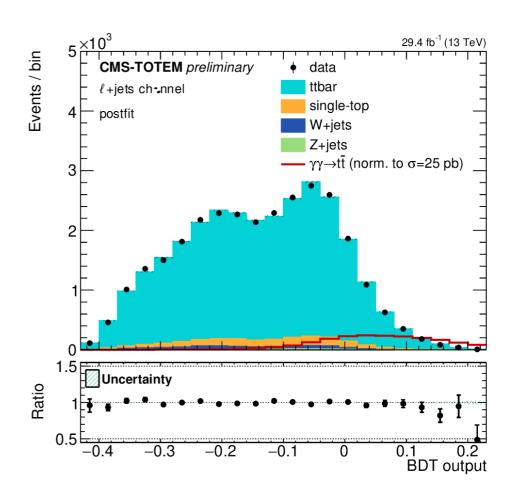
B-tagging with Deep CSV

CEP of $t\bar{t}$ with tagged protons III.

Background estimation:

- MC samples
- Source:
 - PU proton
 - Misidentification of signal
- Event mixing
- MVA: TMVA toolkit


CEP of $t\bar{t}$ with tagged protons IV.


Systematic uncertainties:

- If BDT shape affected:
 - 353QH smoothing algorithm
 - Modified shapes compared to the nominal using Kolmogorov-Smirnov test
- Experimental:
 - Integrated luminosity: 2.3%
 - Efficiency corrections for the lepton trigger: 1-8%
- Theoretical:
 - Single top background normalization: 5%
 - Electroweak background normalization: 30%

CEP of $t\bar{t}$ with tagged protons V.

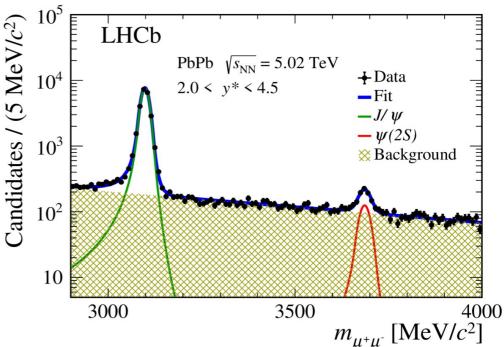
Further results:

Coherent charmonium production in UPC I.

Data sample:

- -2018, PbPb, $\sqrt{s_{NN}} = 5.02$ TeV
- Integrated luminosity: 228 \pm 10 μ b⁻¹
- Simulated events (for corrections for detector resolution, acceptance and efficiency):
 - UPCs: STARlight (with specific LHCb configuration)
 - Decays of unstable particles: EvtGen (with QED finalstate radiation handled by PHOTOS)
- Detector response: Geant4

Coherent charmonium production in UPC II.


Event selection:

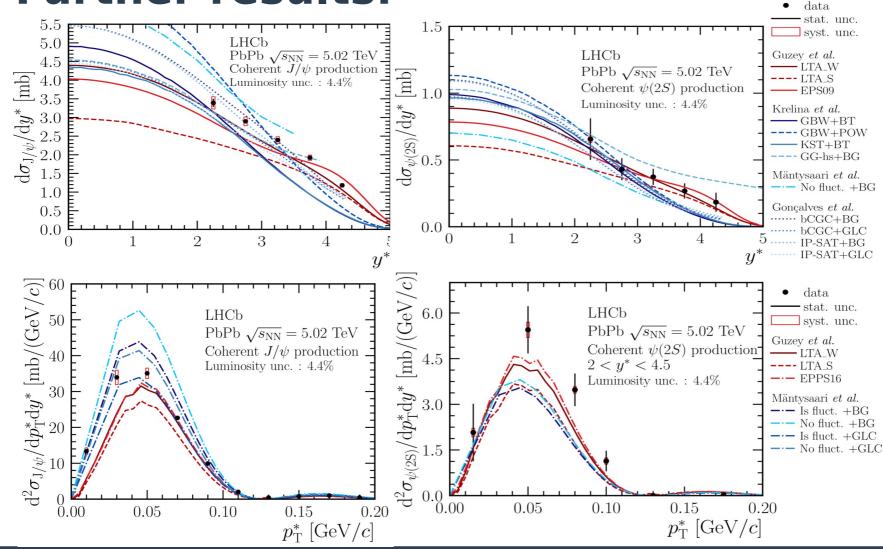
- Decay channels:
 - $J/\psi \rightarrow \mu^+\mu^-$
 - $\psi(2S) \rightarrow \mu^+\mu^-$
- -2.0 < yin nucleus-nucleus center-of-mass frame < 4.5
- Triggers:
 - Hardware-level: at least 1 muon of $p_{\tau} > 900 \text{ MeV}$
 - Software-level (minimum bias): at least 1 track reconstructed by the vertex detector
- Offline:
 - 2 muons with $p_T > 700$ MeV in 2.0 < $\eta < 4.5$
 - Dimuon candidate with $p_T < 1$ GeV, $\Delta \phi > 0.9\pi$
 - Dimuon mass in either ± 65 MeV (J/ψ) or ± 77.35 MeV ($\psi(2S)$)
- Vetoes for too high activity in HeRSCheL & SPD

Coherent charmonium production in UPC III.

Background estimation: fits

Interval $[MeV/c]$	$N_{J/\psi}^{ m tot}$	$N_{J\!/\psi}^{ m coh}$
$0 < p_{\mathrm{T}}^* < 200$	21153 ± 175	20180 ± 175
$0 < p_{\mathrm{T}}^* < 20$	$2216\pm\ 58$	2204 ± 58
$20 < p_{\mathrm{T}}^* < 40$	5647 ± 92	5619 ± 92
$40 < p_{\mathrm{T}}^* < 60$	$5931\pm\ 83$	5885 ± 83
$60 < p_{\mathrm{T}}^* < 80$	3928 ± 65	$3863\pm\ 65$
$80 < p_{\mathrm{T}}^* < 100$	1848 ± 44	1759 ± 44
$100 < p_{\mathrm{T}}^* < 120$	497 ± 23	381 ± 24
$120 < p_{\mathrm{T}}^* < 140$	225 ± 16	88 ± 17
$140 < p_{\mathrm{T}}^* < 160$	289 ± 17	137 ± 18
$160 < p_{\mathrm{T}}^* < 180$	328 ± 18	167 ± 20
$180 < p_{\rm T}^* < 200$	244 ± 16	77 ± 17
Interval [MeV/a	$[c] \qquad N_{\psi(2S)}^{ m tot}$	$N_{\psi(2S)}^{\mathrm{coh}}$
$0 < p_{\mathrm{T}}^* < 20$		468 ± 41
$0 < p_{\mathrm{T}}^* < 3$	$30 77 \pm 35$	$\overline{77 \pm 35}$
$30 < p_{\mathrm{T}}^{*} < 7$	$70 275 \pm 39$	274 ± 39
$70 < p_{\mathrm{T}}^{*} < 9$	$90 91 \pm 14$	91 ± 14
$90 < p_{\mathrm{T}}^* < 11$	$10 27 \pm 8$	27 ± 8
$110 < p_{\mathrm{T}}^{*} < 15$	0 ± 5	0 ± 5
$150 < p_{\mathrm{T}}^{*} < 20$	$00 5 \pm 4$	2 ± 4

			pe pe	
Interval	$N_{J\!/\psi}^{ m tot}$	$N_{J/\psi}^{ m coh}$	$N_{\psi(2S)}^{\mathrm{tot}}$	$N_{\psi(2S)}^{\mathrm{coh}}$
$2.0 < y^* < 4.5$	23355 ± 183	20193 ± 199	513 ± 43	471 ± 44
$2.0 < y^* < 2.5$	2457 ± 60	2070 ± 66	75 ± 15	65 ± 15
$2.5 < y^* < 3.0$	6845 ± 100	5926 ± 108	147 ± 26	137 ± 26
$3.0 < y^* < 3.5$	7875 ± 106	6883 ± 115	168 ± 26	161 ± 26
$3.5 < y^* < 4.0$	5019 ± 82	4362 ± 90	102 ± 18	85 ± 18
$4.0 < y^* < 4.5$	$1166\pm\ 38$	956 ± 44	24 ± 8	21 ± 8
·				


Coherent charmonium production in UPC IV.

Systematic uncertainties:

Source	Relative uncertainty [%]		
	$\sigma_{J\!/\!\psi}^{ m coh}$	$\sigma_{\psi}(2S)^{\mathrm{coh}}$	
Tracking efficiency	0.5 – 2.0	0.5 – 2.0	
PID efficiency	0.9 – 1.6	0.9 – 1.6	
Trigger efficiency	2.7 – 3.7	2.1 – 2.5	
HERSCHEL efficiency	1.4	1.4	
Background estimation	1.2	1.2	
Signal shape	0.04	0.04	
Momentum resolution	0.9 – 34	1.3 – 27	
Branching fraction	0.6	2.1	
Luminosity	4.4	4.4	

Coherent charmonium production in UPC V.

Further results:

Exclusive pion pair production I.

· Data sample:

- October 2011, pp, $\sqrt{s} = 7$ TeV
- Special run: $\beta^* = 90$ m, low PU ($\mu = 0.035$), $7 \cdot 10^{10}$ protons / bunch
- Integrated luminosity: 78.7 ± 0.1 (stat) ± 1.9 (syst) μb^{-1}

MC generators:

- GenEx (baseline calculations of detection & reconstruction efficiency):
 - Exclusive continuum of $\pi^+\pi^-$ & K^+K^-
 - Exponential parametrization for the meson form factor (only free parameter)
 - Non-resonant production without absorption correction
 - No rapidity gap survival probability
 - Pions generated: $|\eta| < 2.7$, off-shell-pion form-factor parameter = 1 GeV
- Dime (for comparison & model uncertainties):
 - Other channels also included: exclusive ρρ or φφ
 - 4 different models for absorption with 3 different parametrization of the meson form factor (exponential, <u>Orearlike</u>, power-like)
- CEP background: PYTHIA8 version 8.183 (with ATLAS A2 set of tuned parameters and MSTW20008LO PDF set, excluding exclusive pion-pair process)
- Detector response: Geant4

Exclusive pion pair production II.

Event selection:

Selection

Bunch selection

Lumi blocks selection

Trigger configuration

Pions:

number of tracks

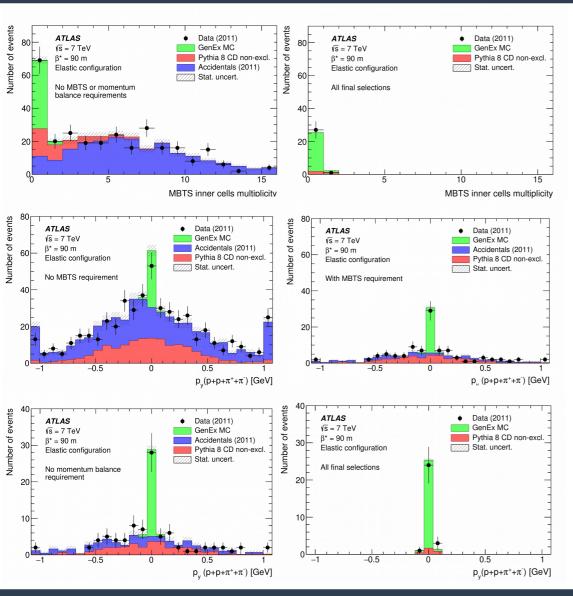
primary vertex

ID track quality

MBTS veto

Protons:

ALFA track quality


ALFA uv-condition

ALFA clean track

ALFA geometry condition

Full system momentum balance in p_x and p_y Fiducial region

Exclusive pion pair production III.

Background estimation:

- Combinatorical: suppressed by event selection
- MBTS veto: great background suppression
- Other central diffraction processes also suppressed

39

Exclusive pion pair production IV.

Systematic uncertainties:

Source of uncertainty	Uncertainty [%] elastic anti-elastic		
Trigger efficiency $\epsilon_{\rm trig}$	±0.1	± 0.3	
Background determination	± 3.5	± 3.5	
Signal and background corrections:			
Beam energy	± 0.1	± 0.1	
ID material	+4.8	+4.1	
Veto on MBTS signal	± 1.3	± 2.0	
ALFA single-track selection	± 0.9	± 0.9	
ALFA reconstruction efficiency	± 0.9	± 0.8	
ALFA geometry selection	± 0.5	± 0.5	
Optics	± 1.1	± 1.0	
Organil great are at in the containts.	+6.4	+6.0	
Overall systematic uncertainty	-4.2	-4.4	
Statistical uncertainty	± 21.2	± 61.6	
Theoretical modelling	± 2.8	±8.0	
Luminosity	± 1.2	± 1.2	

Exclusive pion pair production V.

Further results:

Exclusive $\pi^+\pi^-$ cross-section [µb]				
Elastic configuration				
Measurement	$4.8 \pm 1.0 \text{ (stat)}^{+0.3}_{-0.2} \text{ (syst)} \pm 0.1 \text{ (lumi)} \pm 0.1 \text{ (model)}$			
GenEx \times 0.22 (absorptive correction)	1.5			
Dime	1.6			
Anti-elastic configuration				
measurement	$9 \pm 6 \text{ (stat)}^{+1}_{-1} \text{ (syst)} \pm 1 \text{ (lumi)} \pm 1 \text{ (model)}$			
GenEx \times 0.22 (absorptive correction)	2			
Dime	3			

Total cross section measurements with ALFA I.

Data sample:

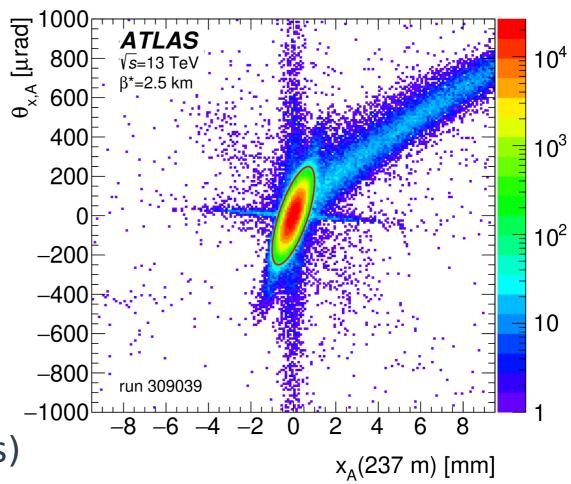
- September 2016, pp, $\sqrt{s} = 13$ TeV
- Special run: $\beta^* = 2.5$ km, 6.10^{10} protons / bunch
- Integrated luminosity: 339.9 \pm 0.1 (stat) \pm 7.3 (syst) $\mu b^{\text{-}1}$

Simulation model:

- MC for acceptance and unfolding corrections
- Background DPE: PYTHIA 8.303
- Detector response: Geant4

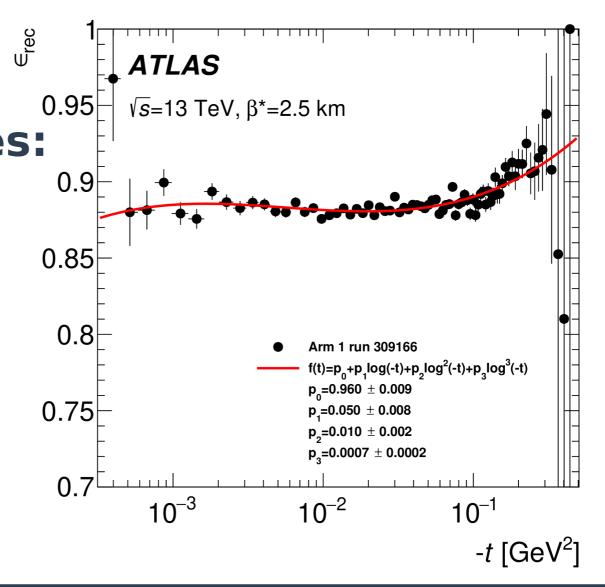
Total cross section measurements with ALFA II.

Event selection:

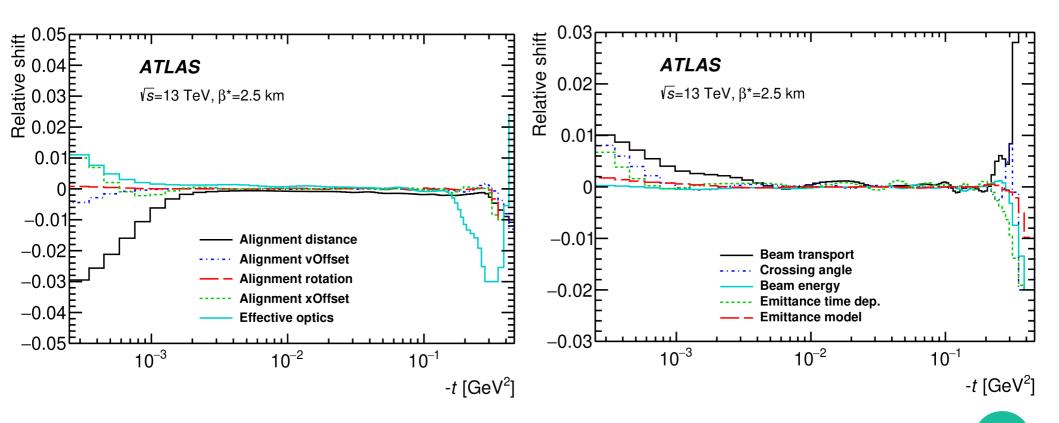

Selection criterion	Numbers of events			
Preselection	2558637			
	Arm 1	Fraction	Arm 2	Fraction
Reconstructed tracks	1289282		1269355	
Cut on $x ext{ A vs C } (3.5\sigma)$	1254738	97.32%	1235792	97.36%
Cut on $y ext{ A vs C } (2 ext{ mm})$	1249888	96.95%	1231251	96.99%
Cut on x vs θ_x (3.5 σ)	1248597	96.84%	1230084	96.91%
Beam-screen cut	1243941	96.48%	1225375	96.53%
Edge cut	1231848	95.55%	1210759	95.38%
Cut on y vs θ_y (40 μ rad)	1214717	94.22%	1195251	94.16%
Total selected	2409968			

Fill	Run	Luminosity $[\mu b^{-1}]$	Selected elastic	Reconstruction efficiency	
			event candidates	$\mathrm{Arm}\ 1\ [\%]$	$\mathrm{Arm}\ 2\ [\%]$
5313	308979	21.38	423862	84.82 ± 0.56	83.11 ± 0.87
5313	308982	6.81	136499	85.84 ± 0.54	84.44 ± 0.55
5314	309010	41.27	846581	87.11 ± 0.51	85.00 ± 0.64
5317	309039	120.08	2409968	85.45 ± 0.49	83.23 ± 0.52
5317	309074	44.31	887373	85.55 ± 0.39	83.48 ± 0.48
5321	309165	55.87	1149499	87.08 ± 0.40	85.41 ± 0.44
5321	309166	50.17	1043576	88.28 ± 0.38	86.43 ± 0.45
Total		339.89	6897358		

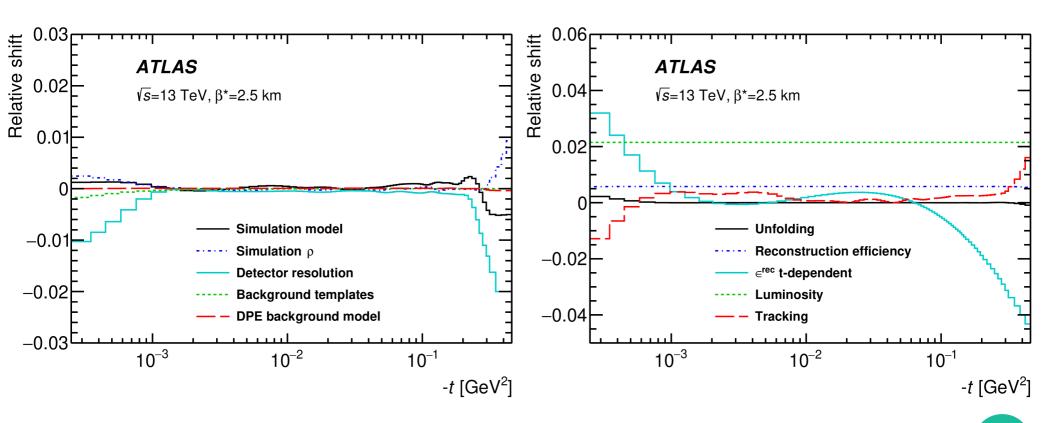
Total cross section measurements with ALFA III.


Background estimation:

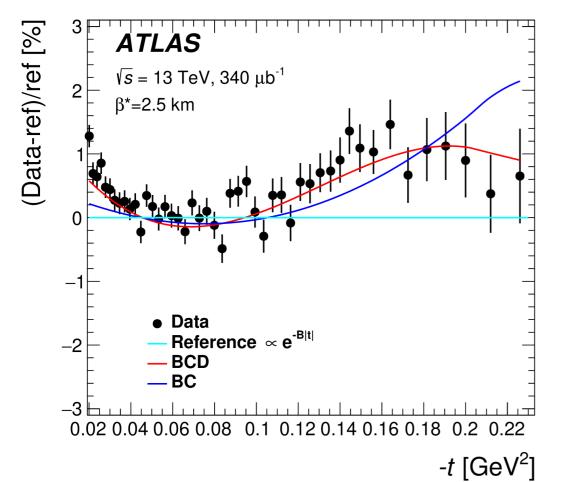
- Data-driven:
 templates of halohalo & halo+SD
- Non-elastic, from central diffraction: double-pomeron exchange (DPE)
- SD with PU proton(s)
- Event mixing

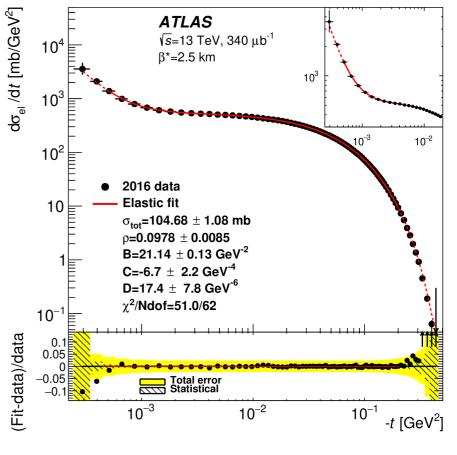

Total cross section measurements with ALFA IV.

 Systematic uncertainties:

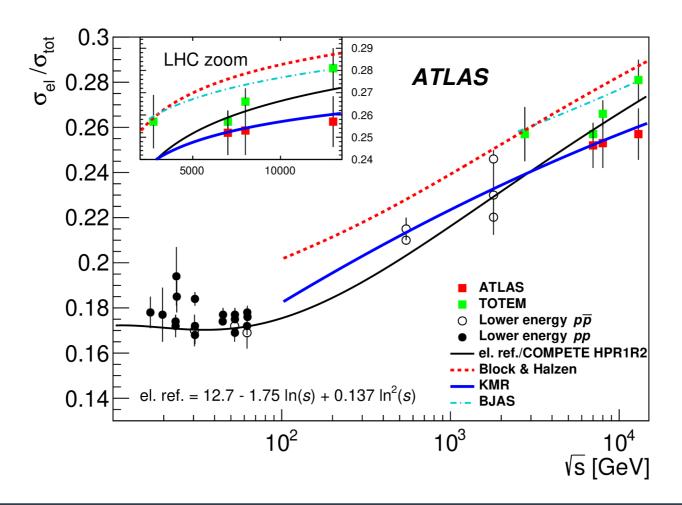

Total cross section measurements with ALFA V/a.

 Further results: relative systematic shifts resulting from uncertainties


Total cross section measurements with ALFA V/b.


 Further results: relative systematic shifts resulting from uncertainties

Total cross section measurements with ALFA V/c.


Further results: Nuclear slope fits

Total cross section measurements with ALFA V/d.

Further results:

