Zoltán Trócsányi

STATUS OF THE SUPERWEAK EXTENSION OF THE STANDARD MODEL AND MUON $g-2$

based on

 (PRD), 2I05.I3360 (J.Phys.G), 2204.07I00 (PRD), 2301.07961 (JHEP), 2301.0662 I (PRD), 2305.II93I (PRDL) and correspondence with BMW collaboration with S. Iwamoto, T.J. Kärkkäinen, I. Nándori, Z. Péli, K. Seller, Zs. Szép

OUTLINE

1. Motivation: status of particle physics

- Colliders
- Cosmology
- Muon anomalous magnetic moment

2. Superweak $U(1)_{z}$ extension of SM (SWSM)
3. Neutrino masses and dark matter candidate
4. Vacuum stability and scalar sector constraints
5. Contribution to M_{w}
6. Conclusions
7. Appendix: Constraints from non-standard interactions

Status of particle physics: energy frontier

- Colliders: SM describes final states of particle collisions precisely
[CMS public]

Status of particle physics: energy frontier

- Colliders: SM describes final states of particle collisions precisely
- No proven sign of new physics beyond SM at colliders*
$\mathrm{pp} \rightarrow X(=$ new Higgs boson $) \rightarrow \mathrm{e}^{ \pm} \mu^{\mp}$ [CMS preprint]

*Exciting news keep popping up, all below discovery significance yet

Status of particle physics: energy frontier

- Colliders: SM describes final states of particle collisions precisely
- No proven sign of new physics beyond SM at colliders*
$\mathrm{pp} \rightarrow X(=$ new Higgs boson $) \rightarrow \mathrm{e}^{ \pm} \mu^{\mp}$ [CMS preprint]

*Exciting news keep popping up, all below discovery significance yet

Status of particle physics: cosmic and intensity frontiers

- Universe at large scale described precisely by cosmological SM: \wedge CDM ($\Omega_{\mathrm{m}}=0.3$)
- Neutrino flavours oscillate
- Existing baryon asymmetry cannot be explained by CP asymmetry in SM
- Inflation of the early, accelerated expansion of the present Universe

Established observations require physics beyond SM, but do not suggest rich BSM physics

Phenomenological approach to new physics

Can we explain these observations, but not more, by the same (simple) model?

Status of the muon anomalous magnetic moment: experiment

- The muon g-2 has been a smoking gun for new physics for many years, more recently:

[https://muon-g-2.fnal.gov/result2023.pdf]

Status of the muon anomalous magnetic moment: experiment

- The muon g-2 has been a smoking gun for new physics for many years
- The most precise experimental value is from FNAL (2023) :

$$
\begin{equation*}
a_{\mu}=\frac{g-2}{2}=116592055(24) \cdot 10^{-11} \tag{0.20ppm}
\end{equation*}
$$

...equivalent to a bathroom scale sensitive to a single eyelash:

Status of the muon anomalous magnetic moment: experiment vs. theory

[BMW compilation]

Status of the muon anomalous magnetic moment: experiment vs. theory

[BMW compilation]

Status of the muon anomalous magnetic moment: theory with R-ratio

- The muon g-2 has been a smoking gun for new physics for many years, but tension already in earlier data used for theory prediction: $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}\right)$cross section in this energy range gives more than 50\% to total HVP contribution to a_{μ}

[BMW compilation] ${ }_{12}$

Status of the muon anomalous magnetic moment: theory with R-ratio

- New CMD3 data show a 15 unit increase in central value and 4.4σ tension with old average:
$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}\right)$cross section in this energy range gives more than 50\% to total HVP contribution to a_{μ}

[BMW compilation] ${ }_{13}$

Status of the muon anomalous magnetic moment: lattice vs. R-ratio

- Lattice: $a_{\mu}^{\mathrm{HVP} @ L O}=707.5(2.3)_{\mathrm{stat}}(5.0)_{\text {sys }}[5.5]_{\mathrm{tot}}$
- ~15 units above the R-ratio white paper value (a 2.1σ tension)

$$
\begin{array}{|r|}
\hline \text { lattice } \\
\text { R-ratio } \\
\hline
\end{array}
$$

[BMW compilation] 14

Message of the muon anomalous magnetic moment

- We are certain that there is new physics beyond the SM
- "Final word" on a_{μ} will tell how BSM should affect the muon g-2

$$
\begin{array}{|r|}
\hline \text { lattice } \longmapsto \square \\
\text { R-ratio } \\
\hline
\end{array}
$$

[BMW compilation] ${ }_{15}$

Status of the muon anomalous magnetic moment

- We are certain that there is new physics beyond the SM
- Current main question:

How large is the new physics contribution to a_{μ} really?

Status of the muon anomalous magnetic moment

- We are certain that there is new physics beyond the SM
- Current main question:

How large is the new physics contribution to a_{μ} really?

- "large" (almost 5 σ - R-ratio result)

Status of the muon anomalous magnetic moment

- We are certain that there is new physics beyond the SM
- Current main question:

How large is the new physics contribution to a_{μ} really?

- "large" (almost 5 σ - R-ratio result)
- "small" (almost insignificant - lattice result)

Status of the muon anomalous magnetic moment

- We are certain that there is new physics beyond the SM
- Current main question:

How large is the new physics contribution to a_{μ} really?

- "large" (almost 5 σ - R-ratio result)
- "small" (almost insignificant - lattice result)
- The experimental result appears robust, only its uncertainty will reduce further

Status of the muon anomalous magnetic moment

- We are certain that there is new physics beyond the SM
- Current main question:

How large is the new physics contribution to a_{μ} really?

- "large" (almost 5 σ - R-ratio result)
- "small" (almost insignificant - lattice result)
- The experimental result appears robust, only its uncertainty will reduce further
- Main task:

Resolve discrepancy between theory predictions

Status of the muon anomalous magnetic moment

- We are certain that there is new physics beyond the SM
- Current main question:

How large is the new physics contribution to a_{μ} really?

- "large" (almost 5 σ - R-ratio result)
- "small" (almost insignificant - lattice result)
- The experimental result appears robust, only its uncertainty will reduce further
- Main task:

Resolve discrepancy between theory predictions

- Until then

> everything else is speculation

Muon anomalous magnetic moment: complying with lattice result

- New physics should have a small (smaller then EW) contribution to a_{μ}
- May constrain the available parameter space, but unlikely to exclude a model compatible with ElectroWeak Precision Observables (EWPOs)

Extension of SM: three alternatives with different strength and weaknesses

- Effective field theory, such as SMEFT: general but highly complex (2499 dim 6 operators), focuses on new physics at high scales
- Simplified models, such as dark photon, extended scalar sector or right-handed neutrinos: "easily accessible" phenomenology, but focus on specific aspect of new physics, so cannot explain all BSM phenomena
- UV complete extension with potential of explaining BSM phenomena within a single model such as SuperWeak extension of the Standard Model: SWSM

Particle content of SM

Particle content of SWSM (take-home picture)

Superweak extension of SM (SWSM)

Symmetry of the Lagrangian: local $\mathrm{G}=\mathrm{G}_{S M} \times \mathrm{U}(1)_{z}$ with $\mathrm{G}_{S M}=\mathrm{SU}(3)_{c} \times \mathrm{SU}(2)_{\llcorner } \times U(1)_{Y}$

 renormalizable gauge theory, including all dim 4 operators allowed by G
Superweak extension of SM (SWSM)

- Symmetry of the Lagrangian: local $G=G_{S M} \times U(1)_{z}$ with $G_{S M}=S U(3)_{c} \times S U(2)_{\llcorner } \times U(1)_{Y}$ renormalizable gauge theory, including all dim 4 operators allowed by G
- z-charges fixed by requirement of
gauge and gravity anomaly cancellation and
- gauge invariant Yukawa terms for neutrino mass generation

Charge assignment from gauge invariant neutrino interactions

field	$S U(3)_{\mathrm{c}}$	$S U(2)_{\mathrm{L}}$	y_{j}	$z_{j}^{(\mathrm{a}}$	$z_{j}^{(\mathrm{b})}$
$U_{\mathrm{L}}, D_{\mathrm{L}}=z_{j} / z_{\phi}-y_{j}^{(\mathrm{c}}$					
U_{R}	3	2	$\frac{1}{6}$	Z_{1}	$\frac{1}{6}$
D_{R}	3	1	$\frac{2}{3}$	Z_{2}	$\frac{7}{6}$
$\nu_{\mathrm{L}}, \ell_{\mathrm{L}}$	1	2	1	$-\frac{1}{3}$	$2 Z_{1}-Z_{2}$
ν_{R}	1	1	$-\frac{5}{6}$	$\frac{1}{2}$	
ℓ_{R}	1	1	-1	$-2 Z_{1}-Z_{2}$	$-\frac{3}{2}$
ϕ	1	2	$\frac{1}{2}$	$Z_{2}-4 Z_{1}$	$\frac{1}{2}$
χ	1	1	0	z_{ϕ}	1

(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

Mixing in the neutral gauge sector

$$
\left(\begin{array}{c}
B_{\mu} \\
W_{\mu}^{3} \\
B_{\mu}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{c}_{W} & -\mathrm{s}_{W} & 0 \\
\mathrm{~s}_{W} & c_{W} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{Z} & -\mathrm{s}_{Z} \\
0 & \mathrm{~s}_{Z} & \mathrm{c}_{Z}
\end{array}\right)\left(\begin{array}{c}
A_{\mu} \\
Z_{\mu} \\
Z_{\mu}^{\prime}
\end{array}\right) \quad \begin{aligned}
& c_{X}=\cos \theta_{X} \\
& s_{X}=\sin \theta_{X}
\end{aligned}
$$

where θ_{W} is the weak mixing angle $\& \theta_{Z}$ is the $Z-Z^{\prime}$ mixing, implicitly: $\tan \left(2 \theta_{Z}\right)=-2 \kappa /\left(1-\kappa^{2}-\tau^{2}\right)$, with κ and τ effective couplings, functions of the Lagrangian couplings

Mixing in the neutral gauge sector

$$
\left(\begin{array}{c}
B_{\mu} \\
W_{\mu}^{3} \\
B_{\mu}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{c}_{W} & -\mathrm{s}_{W} & 0 \\
\mathrm{~s}_{W} & \mathrm{c}_{W} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{c}_{Z} & -\mathrm{s}_{Z} \\
0 & \mathrm{~s}_{Z} & c_{Z}
\end{array}\right)\left(\begin{array}{l}
A_{\mu} \\
Z_{\mu} \\
Z_{\mu}^{\prime}
\end{array}\right) \quad \begin{aligned}
& c_{X}=\cos \theta_{X} \\
& s_{X}=\sin \theta_{X}
\end{aligned}
$$

where θ_{W} is the weak mixing angle \& θ_{Z} is the $Z-Z^{\prime}$ mixing, implicitly: $\tan \left(2 \theta_{Z}\right)=-2 \kappa /\left(1-\kappa^{2}-\tau^{2}\right)$, with κ and τ effective couplings, functions of the Lagrangian couplings

The expressions for the neutral gauge boson masses are somewhat cumbersome, but exists a nice, compact generalization of the SM mass-relation formula: $\frac{M_{W}^{2}}{c_{W}^{2}}=c_{Z}^{2} M_{Z}^{2}+s_{Z}^{2} M_{Z^{\prime}}^{2} \quad\left(M_{W}=\frac{1}{2} g_{\mathrm{L}} v\right)$

Scalars in the SWSM

- Standard Φ complex SU(2) เ doublet and new x complex singlet:

$$
\mathcal{L}_{\phi, \chi}=\left[D_{\mu}^{(\phi)} \phi\right]^{*} D^{(\phi) \mu} \phi+\left[D_{\mu}^{(\chi)} \chi\right]^{*} D^{(\chi) \mu} \chi-V(\phi, \chi)
$$

- with scalar potential
$V(\phi, \chi)=V_{0}-\mu_{\phi}^{2}|\phi|^{2}-\mu_{\chi}^{2}|\chi|^{2}+\left(|\phi|^{2},|\chi|^{2}\right)\left(\begin{array}{cc}\lambda_{\phi} & \frac{\lambda}{2} \\ \frac{\lambda}{2} & \lambda_{\chi}\end{array}\right)\binom{|\phi|^{2}}{|\chi|^{2}}$

Scalars in the SWSM

- Standard Φ complex SU(2) เ doublet and new x complex singlet:

$$
\mathcal{L}_{\phi, \chi}=\left[D_{\mu}^{(\phi)} \phi\right]^{*} D^{(\phi) \mu} \varphi+\left[D_{\mu}^{(x)} \chi\right]^{*} D^{(\chi) \mu} \chi-V(\phi, \chi)
$$

- with scalar potential

$$
V(\phi, \chi)=V_{0}-\mu_{\phi}^{2}|\phi|^{2}-\mu_{\chi}^{2}|x|^{2}+\left(|\phi|^{2},|\chi|^{2}\right)\left(\begin{array}{cc}
\lambda_{\phi} & \frac{\lambda}{2} \\
\frac{\lambda}{2} & \lambda_{\chi}
\end{array}\right)\binom{|\phi|^{2}}{|x|^{2}}
$$

- After SSB, $\mathrm{G} \rightarrow \mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{U}(1)_{\text {@ed }}$ in R_{ξ} gauge

Scalars in the SWSM

- Standard Φ complex SU(2) L doublet and new x complex singlet:

$$
\mathcal{L}_{\phi, \chi}=\left[D_{\mu}^{(\phi)} \phi\right]^{*} D^{(\phi) \mu} \varphi+\left[D_{\mu}^{(x)} \chi\right]^{*} D^{(\chi) \mu} \chi-V(\phi, \chi)
$$

- with scalar potential

$$
V(\phi, \chi)=V_{0}-\mu_{\phi}^{2}|\phi|^{2}-\mu_{\chi}^{2}|x|^{2}+\left(|\phi|^{2},|\chi|^{2}\right)\left(\begin{array}{cc}
\lambda_{\phi} & \frac{\lambda}{2} \\
\frac{\lambda}{2} & \lambda_{\chi}
\end{array}\right)\binom{|\phi|^{2}}{|x|^{2}}
$$

- After SSB, G $\rightarrow \mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{U}(1)_{\text {Qed }}$ in R_{ξ} gauge

$$
\phi=\frac{1}{\sqrt{2}}\binom{-\mathrm{i} \sqrt{2} \sigma^{+}}{v+h^{\prime}+\mathrm{i} \sigma_{\phi}} \quad \& \quad \chi=\frac{1}{\sqrt{2}}\left(w+s^{\prime}+\mathrm{i} \sigma_{x}\right)
$$

Mixing in the scalar sector

$$
\binom{h^{\prime}}{s^{\prime}}=\left(\begin{array}{rr}
c_{S} & s_{S} \\
-s_{S} & c_{S}
\end{array}\right)\binom{h}{s}
$$

where θ_{S} is the scalar mixing angle implicitly:
$\tan \left(2 \theta_{S}\right)=\lambda \nu w /\left(\lambda_{\chi} w^{2}-\lambda_{\phi} v^{2}\right)$, with v and w VEVs

Mixing in the scalar sector

$$
\binom{h^{\prime}}{s^{\prime}}=\left(\begin{array}{rr}
c_{S} & s_{S} \\
-s_{S} & c_{S}
\end{array}\right)\binom{h}{s}
$$

where θ_{S} is the scalar mixing angle implicitly:
$\tan \left(2 \theta_{S}\right)=\lambda \nu w /\left(\lambda_{\chi} w^{2}-\lambda_{\phi} v^{2}\right)$, with v and w VEVs
5 new parameters:

- in gauge sector: $\left\{g_{z}\right.$ and $\left.g_{y z}\right\}$ or $\{\kappa$ and $\tau\} \quad$ or $\left\{\theta_{Z}\right.$ and $\left.M_{Z}\right\}$
- in scalar sector: $\left\{\mu_{\chi}^{2}, \lambda_{\chi}\right.$ and $\left.\lambda\right\}$ or $\left\{w, \lambda_{\chi}\right.$ and $\left.\lambda\right\}$ or $\left\{M_{S^{\prime}} \theta_{S}\right.$ and $\left.\lambda\right\}$

After SSB neutrino mass terms appear

$$
\begin{aligned}
& -\mathcal{L}_{Y}^{\ell}=\frac{w+s^{\prime}+\mathrm{i} \sigma_{\chi}}{2 \sqrt{2}} \overline{\nu_{R}^{c}} \mathbf{Y}_{N} \nu_{R}+\frac{v+h^{\prime}-\mathrm{i} \sigma_{\phi}}{\sqrt{2}} \overline{\nu_{L}} \mathbf{Y}_{\nu} \nu_{R}+\text { h.c. } \\
& \mathbf{M}_{N}=\frac{w}{\sqrt{2}} \mathbf{Y}_{N} \\
& \text { flavour basis the full } 6 \times 6 \text { mass matrix reads } \quad \mathbf{M}^{\prime}=\left(\begin{array}{rr}
\mathbf{0}_{3} & \mathbf{M}_{D}^{T} \\
\mathbf{M}_{D} & \mathbf{M}_{N}
\end{array}\right)
\end{aligned}
$$

After SSB neutrino mass terms appear

$$
\begin{aligned}
& -\mathcal{L}_{Y}^{\ell}=\frac{w+s^{\prime}+\mathrm{i} \sigma_{\chi}}{2 \sqrt{2}} \overline{\nu_{R}^{c}} \mathbf{Y}_{N} \nu_{R}+\frac{v+h^{\prime}-\mathrm{i} \sigma_{\phi}}{\sqrt{2}} \overline{\nu_{L}} \mathbf{Y}_{\nu} \nu_{R}+\text { h.c. } \\
& \mathbf{M}_{N}=\frac{w}{\sqrt{2}} \mathbf{Y}_{N} \\
& \text { flavour basis the full } 6 \times 6 \text { mass matrix reads } \quad \mathbf{M}^{\prime}=\left(\begin{array}{cc}
\mathbf{0}_{3} & \mathbf{M}_{D}^{T} \\
\mathbf{M}_{D} & \mathbf{M}_{N}=\frac{v}{\sqrt{2}} \mathbf{Y}_{\nu}
\end{array}\right)
\end{aligned}
$$

- v_{L} and v_{R} have the same q-numbers, can mix, leading to type-I see-saw

After SSB neutrino mass terms appear

$$
\begin{aligned}
& -\mathcal{L}_{Y}^{\ell}=\frac{w+s^{\prime}+\mathrm{i} \sigma_{\chi}}{2 \sqrt{2}} \overline{\nu_{R}^{c}} \mathbf{Y}_{N} \nu_{R}+\frac{v+h^{\prime}-\mathrm{i} \sigma_{\phi}}{\sqrt{2}} \overline{\nu_{L}} \mathbf{Y}_{\nu} \nu_{R}+\text { h.c. } \\
& \mathbf{M}_{N}=\frac{w}{\sqrt{2}} \mathbf{Y}_{N} \\
& \text { flavour basis the full } 6 \times 6 \text { mass matrix reads } \quad \mathbf{M}^{\prime}=\left(\begin{array}{rr}
\mathbf{0}_{3} & \mathbf{M}_{D}^{T} \\
\mathbf{M}_{D} & \mathbf{M}_{N}
\end{array}\right)
\end{aligned}
$$

- v_{L} and v_{R} have the same q-numbers, can mix, leading to type-I see-saw
- Dirac and Majorana mass terms appear already at tree level by SSB (not generated radiatively)

After SSB neutrino mass terms appear

$$
\begin{aligned}
& \qquad \underbrace{-\mathcal{L}_{Y}^{\ell}=\frac{w+s^{\prime}+\mathrm{i} \sigma_{\chi}}{2 \sqrt{2}} \overline{\nu_{R}^{c}} \mathbf{Y}_{N} \nu_{R}+\frac{v+h^{\prime}-\mathrm{i} \sigma_{\phi}}{\sqrt{2}} \overline{\nu_{L}} \mathbf{Y}_{\nu} \nu_{R}+\text { h.c. }} \begin{array}{l}
\mathbf{M}_{N}=\frac{w}{\sqrt{2}} \mathbf{Y}_{N} \\
\text { - In flavour basis the full } 6 \times 6 \text { mass matrix reads } \quad \mathbf{M}^{\prime}=\left(\begin{array}{rr}
\mathbf{0}_{3} & \mathbf{M}_{D}^{T} \\
\mathbf{M}_{D} & \mathbf{M}_{N}
\end{array}\right)
\end{array}) \frac{v}{\sqrt{2}} \mathbf{Y}_{\nu}
\end{aligned}
$$

- v_{L} and v_{R} have the same q-numbers, can mix, leading to type-I see-saw
- Dirac and Majorana mass terms appear already at tree level by SSB (not generated radiatively)
- Quantum corrections to active neutrinos are not dangerous [Iwamoto et al, arXiv:2104.14571]

Expected consequences (take-home messages)

Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]
The lightest new particle is a natural and viable candidate for WIMP dark matter if it is sufficiently stable [Seller, Iwamoto and ZT, arXiv:2104.11248]

Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis [Seller, Szép, ZT, arXiv:2301.07961 and under investigation]

The second scalar together with the established BEH field can stabilize the vacuum and be related to the accelerated expansion now and inflation in the early universe
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]

Expected consequences (take-home messages)

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations [Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural and viable candidate for WIMP dark matter if it is sufficiently stable
[Seller, Iwamoto and ZT, arXiv:2104.11248]
Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis [Seller, Szép, ZT, arXiv:2301.07961 and under investigation]

The second scalar together with the established BEH field can stabilize the vacuum and be related to the accelerated expansion now and inflation in the early universe
[Péli, Nándori and' ZT, arXiv:1911.07082; Péti and ZT, arXiv: 2204.07100]

Dark matter candidate

- DM exists, but known evidence is based solely on the gravitational effect of the dark matter on the luminous astronomical objects and on the Hubble-expansion of the Universe

Dark matter candidate

- DM exists, but known evidence is based solely on the gravitational effect of the dark matter on the luminous astronomical objects and on the Hubble-expansion of the Universe
- Assume that the DM has particle origin

Dark matter candidate

- DM exists, but known evidence is based solely on the gravitational effect of the dark matter on the luminous astronomical objects and on the Hubble-expansion of the Universe
- Assume that the DM has particle origin
- Only chance to observe such a particle if it interacts with the SM particles, which needs a portal In the superweak model the vector boson portal Z^{\prime} with the lightest sterile neutrino ν_{4} as dark matter candidate is a natural scenario (Higgs portal exists, but negligible)

Parameter space for the freeze-out scenario of dark matter production in the SWSM

It is essential for the SWSM DM candidate that the resonance in $\mathrm{SM}+\mathrm{SM} \rightarrow \mathrm{Z}^{\prime} \rightarrow \mathrm{DM}+\mathrm{DM}$ can dominate the integral in the rate

Experimental constraints

- Anomalous magnetic moment of electron and muon
- Z' couples to leptons modifying the magnetic moment
- Constraints on $(g-2)$ translate to upper bounds on the coupling $g_{z}\left(M_{Z^{\prime}}\right)$
- NA64 search for missing energy events
- Strict upper bounds on $g_{z}\left(M_{Z^{\prime}}\right)$ for any $\mathrm{U}(1)$ extension (dark photons)
- Supernova constraints based on SN1987A
- Constraints are based on comparing observed and calculated neutrino fluxes
- Big Bang Nucleosynthesis provides constraints on new particles
- New particles should have negligible effects during BBN
- Meson production can be dangerous close to BBN
- Further constraints are due to CMB, solar cooling, beam dump experiments etc.

Cosmological constraints on the freeze-out scenario of dark matter production in the SWSM

Expected consequences (take-home messages)

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations [Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural and viable candidate for WIMP dark matter if it is sufficiently stable
[Seller, Iwamoto and ZT, arXiv:2104.11248]
- Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis [Seller, Szép, ZT, arXiv:2301.07961 and under investigation]

The second scalar together with the established BEH field can stabilize the vacuum and be related to the accelerated expansion now and inflation in the early universe
[Péli, Nándori and' ZT, arXiv:1911.07082; Péli and ZT, a‘Xiv:2204.07100]

Prerequisite: Phase-transitions in the SWSM

$\mathrm{U}(1)_{z}$ is broken earlier than $\mathrm{SU}(2) \mathrm{LXU}(1)_{\mathrm{r}}$

$M_{S}=200 \mathrm{GeV}, \quad M_{N}=150 \mathrm{GeV}, \quad w=5 v, \quad|\lambda|=0.0394$
[Seller, Szép, ZT, arXiv:2301.07961]

Prerequisite: phase-transition temperatures in the SWSM

$\mathrm{U}(1)_{z}$ is broken earlier than $\mathrm{SU}(2)_{\left\llcorner x U(1)_{Y}\right.}$

[Seller, Szép, ZT, arXiv:2301.07961]

Expected consequences (take-home messages)

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural and viable candidate for WIMP dark matter if it is sufficiently stable
[Seller, Iwamoto and ZT, arXiv:2104.11248]
- Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis [Seller, Szép, ZT, arXiv:2301.07961 and under investigation]
- The second scalar together with the established BEH field can stabilize the vacuum and be related to the accelerated expansion now and inflation in the early universe
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]

Expected consequences (take-home messages)

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations [Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural and viable candidate for WIMP dark matter if it is sufficiently stable
[Seller, Iwamoto and ZT, arXiv:2104.11248]
- Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis [Seller, Szép, ZT, arXiv:2301.07961 and under investigation]
- The second scalar together with the established BEH field can stabilize the vacuum and be related to the accelerated expansion now and inflation in the early universe [Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]

SWSM has the potential of explaining all known results beyond the SM

Main questions

Is there a non-empty region of the parameter space where all these promises are fulfilled?

Main questions

Is there a non-empty region of the parameter space where all these promises are fulfilled?

Can we predict any new phenomenon observable by present or future experiments?

Main questions

Present focus:

Is there a non-empty region of the parameter space where all these promises are fulfilled?

Can we predict any new phenomenon observable by present or future experiments?

Important test

Once the allowed region of the parameter space for fulfilling the expectations is understood
the observation of the Z ' or S in the allowed
region

Experimental constraints in the scalar sector from direct searches and M_{W}

- $M_{s}>M_{h}:$
[Zoltán Péli and ZT, arXiv: 2204.07100]

$$
y_{x}=0: \text { scalar sector decouples }
$$

Experimental constraints in the scalar sector from direct searches and M_{W}

- $M_{s}>M_{h}:$

[Zoltán Péli and ZT, arXiv: 2204.07100]

M_{w} is measured and computed precisely (with per myriad precision)

[PDG 2023]

Prediction of M_{W} in the SWSM

- Can be determined from the decay width of the muon:
$M_{W}^{2}=\frac{\cos ^{2} \theta_{Z} M_{Z}^{2}+\sin ^{2} \theta_{Z} M_{Z^{\prime}}^{2}}{2}\left(1+\sqrt{1-\frac{4 \pi \alpha /\left(\sqrt{2} G_{F}\right)}{\cos ^{2} \theta_{Z} M_{Z}^{2}+\sin ^{2} \theta_{Z^{\prime}} M_{Z^{\prime}}^{2}} \frac{1}{1-\Delta r_{S M^{-}}\left(\Delta r_{B S M}^{(1)}+\Delta r_{B S M}^{(2)}\right)}}\right)$
- Valid in $\overline{\mathrm{MS}}$
- θ_{Z} is the $Z-Z^{\prime}$ mixing angle
- $\Delta r_{S M}$ collects the SM quantum corrections (known completely at two loops and partially at three loops)
- $\Delta r_{B S M}^{(1)}$ collects the formally SM quantum corrections but with BSM loops
- $\Delta r_{B S M}^{(2)}$ collects the BSM corrections to $M_{Z^{\prime}}$ and θ_{Z}
[Zoltán Péli and ZT, arXiv: 2305.11931] $_{45}$

Prediction of M_{W} in the SWSM

Case (i) full one-loop corrections
Case (ii) corrections without $\Delta r_{B S M}^{(2)}$

Prediction of M_{W} in the SWSM

Case (i) full one-loop corrections
Case (ii) corrections without $\Delta r_{B S M}^{(2)}$

Conclusions

- Established observations require physics beyond SM, but do not suggest rich BSM physics
- $\mathrm{U}(1)_{\text {z }}$ superweak extension has the potential of explaining all known results beyond the SM
- Neutrino masses are generated by SSB at tree level
- One-loop corrections to the tree-level neutrino mass matrix computed and found to be small (below 1\%o) in the parameter space relevant in the SWSM
- Lightest sterile neutrino is a candidate DM particle in the [10,50] MeV mass range for freeze-out mechanism with resonant enhancement \rightarrow predicts an approximate mass relation between vector boson and lightest sterile neutrino
- In the scalar sector we find non-empty parameter space for $M_{s}>M_{h}$
- Contributions to EWPOs (e.g. $M_{W^{\prime}}$ lepton g-2) are negligible in the superweak region and a systematic exploration of the parameter space is ongoing
the end

Appendix

Status of the muon anomalous magnetic moment: window observable

- restrict correlation window to [0.4,1.0] fm:
- two orders of magnitude easier (less CPU, less manpower needed) lattice vs. R-ratio: 4.9o tension:

$\left(144 \times 96^{3}, a \sim 0.064 \mathrm{fm}, M_{\pi} \sim 135 \mathrm{MeV}\right)$

Non-standard interactions and the SWSM

[Timo J. Kärkäinen and ZT, arXiv: 2301.06621]

$$
\mathcal{O}_{6 a}=\frac{C_{6 a}}{\Lambda^{2}}\left(\bar{L} \gamma^{\mu} P_{\mathrm{L}} L\right)\left(\bar{f} \gamma_{\mu} P_{X} f\right)
$$

where Λ is the scale of new physics, can be as low as few MeV , which can be probed in
Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)
Standard parametrization of NSI:
$\mathscr{L}_{\mathrm{NSI}}=-2 \sqrt{2} G_{\mathrm{F}} \quad \sum \varepsilon_{\ell, \ell^{\prime}}^{f, X}\left(\bar{\nu}_{\ell} \gamma^{\mu} P_{\mathrm{L}} \nu_{\ell^{\prime}}\right)\left(\bar{f}_{\mu} P_{X} f\right)$
where $\varepsilon_{\ell, \ell^{\prime}}^{f X} \propto+\frac{f, X= \pm, \ell, \ell^{\prime}}{q^{2}}$ if $q^{2} \gg M^{2}$,
"light NSI"
for a mediator
$\varepsilon_{\ell, \ell^{\prime}}^{f, X} \propto-\frac{1}{M^{2}}$ if $q^{2} \ll M^{2}, \quad$ "heavy $\mathrm{NSI}^{\prime \prime}, \quad$ of mass M

Non-standard interactions and the SWSM

assume $M=50 \mathrm{MeV}$, which is

- light in CHARM or NuTEV $q^{2}=O\left((20 \mathrm{GeV})^{2}\right)$
- heavy in neutrino oscillation experiments $q^{2} \approx 0$
- but $q^{2} \approx M^{2}$ in CEvNS

We can still apply the NSI formalism using the full propagator with q^{2} being the characteristic momentum transfer squared

Non-standard interactions and the SWSM

assume $M=50 \mathrm{MeV}$, which is

- light in CHARM or NuTEV $q^{2}=O\left((20 \mathrm{GeV})^{2}\right)$
- heavy in neutrino oscillation experiments $q^{2} \approx 0$
- but $q^{2} \approx M^{2}$ in CEvNS

We can still apply the NSI formalism using the full propagator with q^{2} being the characteristic momentum transfer squared

- Can be used to
[Timo J. Kärkäinen and ZT, arXiv: 2301.06621]
- Constrain the parameter space of SWSM
- Predict relations between NSI couplings assuming SWSM

Non-standard interactions and the SWSM

$\varepsilon_{\ell \ell}^{m}=\underbrace{\varepsilon_{\ell \ell}^{e}+2 \varepsilon_{\ell \ell}^{u}+\varepsilon_{\ell \ell}^{d}}_{=0}+\frac{N_{n}}{N_{e}}\left(\varepsilon_{\ell \ell}^{u}+2 \varepsilon_{\ell \ell}^{d}\right)$	$\left(\begin{array}{lll} \varepsilon_{e e}^{m} & \varepsilon_{e \mu}^{m} & \varepsilon_{e \tau}^{m} \\ \varepsilon_{e \mu}^{m *} & \varepsilon_{\mu \mu}^{m} & \varepsilon_{\mu \tau}^{m} \\ \varepsilon_{e \tau}^{m *} & \varepsilon_{\mu \tau}^{m *} & \varepsilon_{\tau \tau}^{m} \end{array}\right)$ $\mu-\tau$ symmetry	$\left(\begin{array}{ccc} \varepsilon_{e} & 0 & 0 \\ 0 & \varepsilon_{\mu} & 0 \\ 0 & 0 & \varepsilon_{\tau} \end{array}\right)$ Flavour-conserving	$\left(\begin{array}{lll} \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{array}\right)$ Flavour-universal
CLFV decays	\checkmark	No	No
ν oscillation	\checkmark	\checkmark	No
CE ν NS			\checkmark
	maybe	maybe	maybe

Non-standard interactions and the SWSM

- High-energy theory enforces texture for NSI matrix:

- Existing limits on NSI constrain the parameters of the high-energy theory

Non-standard interactions and the SWSM: preferred regions of the parameters

Non-standard interactions and the SWSM: preferred regions of the parameters

