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What is Machine Learning?
I Machine Learning comprises a set of algorithms which e.g.

1. given some set of example data points belonging to various classes,
2. learns based on these examples,
3. so that it can assign new unseen data points to these classes...

I The renaissance of Machine Learning in recent years came from the
success of Deep Neural Networks on image datasets..

I MNIST: The Hello World of Machine Learning...

I CIFAR-10 and CIFAR-100
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What is Machine Learning?

I ImageNet: state of the art...
1.2 million images (256x256+) in 1000 classes

I There is now of course much more to ML (Reinforcement Learning
(e.g. AlphaGo), GAN, language models etc.)...
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What is Machine Learning?

I There is a wide variety of Machine Learning classification algorithms:
I Deep Neural Networks
I Random Forests
I Gradient Boosted Trees
I Nearest Neighbours
I Logistic Regression

I Consider now a two class problem:
e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)

I Typically these ML classification algorithms do not provide only the
class y of a new data point (e.g. image) but rather give the
probability that the class is y = 1

I This is really the conditional probability

p(y = 1| x11 . . . xij . . . xHW︸ ︷︷ ︸
pixels of the image

)

I Machine Learning classification algorithms are designed to model
(and learn from data!) very complex conditional probability
distributions...
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Why computing entropy is interesting?

Monte-Carlo configurations

What is the free energy/entropy?

Spiking neurons

What is the information content?

Complexity for Neural Net-
works

Use entropy to define this!

Nontrivial in high dimension!

−→ New method

6 / 35



Shannon entropy

Suppose that we have an N-dimensional binary signal {xi}i=1..N coming
from a probability distribution p(x1, x2, . . . , xN).

The Shannon entropy is defined by

Key difficulty: Estimate p(x1, x2, . . . , xN) from a set of n samples...

I Count the number of occurrencies k of a configuration {xi}i=1..N
I Estimate the probability of this configuration as

p(x1, x2, . . . , xN) =
k
n

I There are various refinements taking into account finite n effects:
Miller-Madow, Chao-Shen, Grassberger, James-Stein,
Nemenman-Shafee-Bialek (NSB)
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Problems:

I As we increase the dimensionality N, the number of possible
configurations grows as 2N ...

I Then it is quite probable that each configuration occurs at most
once in the given data sample...

I This is the generic situation in Physics simulations
e.g. a 20× 20 2D Ising model has 2400 ∼ 10120 configurations

I All configurations are indeed distinct within the 20000 MC
configurations of the above Ising model at T ≥ 2.7

We cannot use the above ways of evaluating entropy based on
occurrence counts...
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Entropy in Physics

I In Physics we have the additional structure of a Boltzmann
distribution:

pBoltzmann(x1, x2, . . . , xN) =
1
Z

e−
1
T E(x1,x2,...,xN )

I E (x1, x2, . . . , xN) is typically easy to evaluate...
I ... but in log p(x1, x2, . . . , xN) we have log Z which involves a

summation over all configurations...
I very difficult (if not impossible) to evaluate
I Indeed entropy is equivalent to the free energy through

F = −T log Z = 〈E 〉 − TS

Use indirect methods to compute the entropy...
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Temperature integration

I Evaluate the heat capacity C (T ) from the variance of the energy
σ2E (T )

C (T ) =
∂〈E 〉
∂T

=
σ2E (T )

T 2

I Obtain the entropy by a numerical integration over T :

S(T0) =

∫ T0
0

C (T )
dT
T

I Need to perform separate Monte Carlo simulations for the whole
range of temperatures from T = 0 to T = T0

Wang-Landau sampling Wang, Landau ’01

I Does not use the original Monte Carlo configurations at all..
I Need to perform conceptually different Monte Carlo sampling to

evaluate the density of states...
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Goal:

1. Find a method for computing entropy from binary
configurations which would work in the regime when each
configuration appears at most only once

2. Use it to compute the entropy and free energy directly from Monte
Carlo configurations at a given temperature...
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Goal:

1. Find a method for computing entropy from binary
configurations which would work in the regime when each
configuration appears at most only once

2. Use it to compute the entropy and free energy directly from Monte
Carlo configurations at a given temperature...

−→ Entropy
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Idea:

The formula using occurrence counts

S = −
∑

{xi}i=1..N

p(x1, x2, . . . , xN) log2 p(x1, x2, . . . , xN)

with

p(x1, x2, . . . , xN) =
k
n

treats each configuration as a structureless “atomic” object.

This approach: Analyze instead the internal structure of the
configurations...

use Machine Learning methods...
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Entropy from Machine Learning

I Start from the exact rewriting

p(x1, x2, . . . , xN) = p(x1)p(x2|x1)p(x3|x1, x2) · . . .

I Shannon’s entropy 〈−log2p〉 decomposes into a sum of N terms

S = S1 + ∆S2 + ∆S3 + . . .∆SN

I The first term is just the entropy of the first neuron/spin

S1 = −〈log2 p(x1)〉 ≡ −p1 log2 p1 − (1− p1) log2(1− p1)

where p1 ≡ p(x1 = 1).
I The second term is more interesting...

∆S2 = −〈log2 p(x2|x1)〉
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Entropy from Machine Learning

∆S2 = −〈log2 p(x2|x1)〉

I p(x2|x1) (and p(x3|x1, x2) etc.) is exactly a conditional probability
distribution of the kind which is well computed by machine learning
classifiers!

I It corresponds to predicting the spin x2 based on the value of the
spin x1 interpreted as classification problems

I Moreover
∆S2 = −〈log2 p(x2|x1)〉

is the cross-entropy loss of that machine learning classification
problem

I similarly for p(x3|x1, x2) we predict the class (spin) x3 based on the
data x1, x2
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Entropy from Machine Learning

The resulting prescription

I An estimate of the entropy is given by

S = S1 + ∆S2 + ∆S3 + . . .∆SN

I This is a sum of cross-entropy losses of a sequence of supervised
classification problems where we predict the probability of xj = 1
given the values of the previous spins x1, x2, . . . , xj−1.

I One can use any machine learning classification algorithm to
compute the entropy

15 / 35



Entropy from Machine Learning

The resulting prescription

I An estimate of the entropy is given by

S = S1 + ∆S2 + ∆S3 + . . .∆SN

I This is a sum of cross-entropy losses of a sequence of supervised
classification problems where we predict the probability of xj = 1
given the values of the previous spins x1, x2, . . . , xj−1.

I One can use any machine learning classification algorithm to
compute the entropy

15 / 35



Entropy from Machine Learning

The resulting prescription

I An estimate of the entropy is given by

S = S1 + ∆S2 + ∆S3 + . . .∆SN

I This is a sum of cross-entropy losses of a sequence of supervised
classification problems where we predict the probability of xj = 1
given the values of the previous spins x1, x2, . . . , xj−1.

I One can use any machine learning classification algorithm to
compute the entropy

15 / 35



Entropy from Machine Learning

The resulting prescription

I An estimate of the entropy is given by

S = S1 + ∆S2 + ∆S3 + . . .∆SN

I This is a sum of cross-entropy losses of a sequence of supervised
classification problems where we predict the probability of xj = 1
given the values of the previous spins x1, x2, . . . , xj−1.

I One can use any machine learning classification algorithm to
compute the entropy

15 / 35



Entropy from Machine Learning

The resulting prescription

I An estimate of the entropy is given by

S = S1 + ∆S2 + ∆S3 + . . .∆SN

I This is a sum of cross-entropy losses of a sequence of supervised
classification problems where we predict the probability of xj = 1
given the values of the previous spins x1, x2, . . . , xj−1.

I One can use any machine learning classification algorithm to
compute the entropy

15 / 35



Variational interpretation

I Given enough data, it is easy to see that the true entropy is
bounded from above by the Machine Learning estimate

Strue = −〈log2 ptrue〉true ≤ −〈log2 pML︸︷︷︸
ptrial

〉true

I One can therefore consider this as a variational bound for entropy...
I ... but with very nontrivial trial functions coming from Machine

Learning classifiers...
I One can try various ML classifiers and pick the best...
I Comparison of estimates from linear (logistic regression) and

nonlinear ML classifiers gives novel kind of information on the
complexity of data...
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Further remarks

I The specific classification problems depend on the ordering of the
spins x1, x2, . . . , xN

I However, the final answer (sum of the cross-entropies) should be
independent of the ordering

I This is a nontrivial cross-check of the applicability of a particular
machine learning classification algorithm

I One should never evaluate ML models (to get probabilities) on the
data which were used for training

I A standard way to sidestep this issue is to use k-fold cross-validation

from scikit-learn docs
I ... and use only the predictions on the test folds...
I refinement: shuffle the data differently for each classification problem
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Example

2D Ising model:

Evaluate the entropy and free energy from Monte Carlo configurations of
the 2D Ising model

I Has two phases and a critical point in between...
I There is a generalization of the Onsager solution to an exact

solution on a periodic L× L lattice due to Kaufman
I At a given temperature, we generate 20000 configurations of the 2D

Ising model on a 20× 20 lattice
I We consider a range of temperatures T = 1.0 to T = 4.0

(Tc ∼ 2.269...) covering both phases
I There are ∼ 10120 possible configurations, for T ≥ 2.7 the Monte

Carlo samples involve only distinct configurations...
I We choose a random ordering of the lattice sites for the

classification problems
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2D Ising model

Entropy (per spin)

19 / 35



2D Ising model

Free energy (per spin) — from F = 〈E 〉 − TS
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From Physics back to Machine Learning...
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Interlude: Deep Convolutional Neural Networks (DCNN)

I Contemporary DCNN are much deeper > 50 layers...
I Going further (deeper) into the network integrates features from

wider range of scales...
I The outputs of interior layers are some (nonlocal) feature

representations...
I ... which become more and more global until we reach the semantic

classification
I One can view a DCNN as a very nontrivial nonlinear goal-directed

analog of a Fourier or wavelet transform of the original image...
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Physics analogs

MERA AdS/CFT

DCNN cf. Hashimoto

represents probability distribution of natural images...
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General questions:

I Look for interesting observables which characterize the behaviour of
the network layers as a function of depth (scale)

I Try to interpret it as a characteristic of the dataset (various kinds of
images/learning tasks) – here the deep neural network is used as a
tool...

I ... and the image dataset is thought as an analog of a “physical
system”

Deep Neural Network ∼ “holography” for complex probability
distributions

look for an analog of complexity...
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Complexity in ∼tensor networks and holography
Circuit complexity

I Pick some family of elementary unitary operators (“gates”)

|Ψ〉 = U1 ◦ U2 ◦ U3 ◦ . . . ◦ Un |REF 〉

I Define complexity as

complexity ∝ (log?) min
∑
i

cost(Ui )

Holography

I Complexity proportional to spatial volume Susskind

complexity ∝ V⊥

∫
dz
√

g

I “additive” over scales −→ look at something additive over layers...

use these only as intuitions...
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Complexity for neural networks – heuristics

Do not count parameters but estimate the complexity of a particular
computation – the neural network architecture is kept fixed!

I In modern neural networks we have typically ReLU neurons

yk = ReLU(Wkixi + bk)

which act either as a linear function or as zero
I It does not make sense to count gates which collapse under

composition
A1 ◦ A2 ◦ A3 ◦ A4 = A

I Both the linear function and zero collapse under composition!
I Nontriviality arises with changing the mode of operation (switching

on/off)
I Idea: Define complexity in terms of the switching behaviour

(nonlinearity!).
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Complexity for neural networks

I Define a binary nonlinearity variable (zk = 1 on, zk = 0 off)

zk = θ(Wkixi + bk)

I Define the complexity of a layer as the Shannon entropy of the
nonlinearities zk :

complexity ≡ entropy of nonlinearity

I We can study the nonlinearity of the neural network’s operation as a
function of depth...

I Using the algorithm from the first part of the talk, we can effectively
compute the complexity for each layer...

... and add them up if we want
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Effective dimension of feature representations
I Complexity by design ignored details of linear operation of the

network...
I To capture information on the linear regime, introduce a

complementary observable effective dimension of the feature
representation of the given layer...

Algorithm:
1. Compute the PCA of the layer output

2. Get the variance ratio explained ri (
∑

ri = 1)

3. Compute Shannon entropy of the ri ’s

4. Define
effective dimension ≡ exp(S [{ri}]) 28 / 35
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Numerical experiments
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“Holographic” plots

I The different colors represent different stages of a resnet-56
network (version for CIFAR-10 dataset)

I The network produces richer representations as we go deeper into
the network..

I ...more nonlinearity and higher effective dimension...
I We observe increase when going to more difficult datasets –

especially at the higher levels of the network

30 / 35



“Holographic” plots

I The different colors represent different stages of a resnet-56
network (version for CIFAR-10 dataset)

I The network produces richer representations as we go deeper into
the network..

I ...more nonlinearity and higher effective dimension...
I We observe increase when going to more difficult datasets –

especially at the higher levels of the network

30 / 35



“Holographic” plots

I The different colors represent different stages of a resnet-56
network (version for CIFAR-10 dataset)

I The network produces richer representations as we go deeper into
the network..

I ...more nonlinearity and higher effective dimension...
I We observe increase when going to more difficult datasets –

especially at the higher levels of the network

30 / 35



“Holographic” plots

I The different colors represent different stages of a resnet-56
network (version for CIFAR-10 dataset)

I The network produces richer representations as we go deeper into
the network..

I ...more nonlinearity and higher effective dimension...
I We observe increase when going to more difficult datasets –

especially at the higher levels of the network

30 / 35



“Holographic” plots

I The different colors represent different stages of a resnet-56
network (version for CIFAR-10 dataset)

I The network produces richer representations as we go deeper into
the network..

I ...more nonlinearity and higher effective dimension...
I We observe increase when going to more difficult datasets –

especially at the higher levels of the network

30 / 35



“Holographic” plots

I The different colors represent different stages of a resnet-56
network (version for CIFAR-10 dataset)

I The network produces richer representations as we go deeper into
the network..

I ...more nonlinearity and higher effective dimension...
I We observe increase when going to more difficult datasets –

especially at the higher levels of the network

30 / 35



“Holographic” plots

I The different colors represent different stages of a resnet-56
network (version for CIFAR-10 dataset)

I The network produces richer representations as we go deeper into
the network..

I ...more nonlinearity and higher effective dimension...
I We observe increase when going to more difficult datasets –

especially at the higher levels of the network

30 / 35



Dataset difficulty

I We evaluated complexity and effective dimension averaged over the
topmost layers of the resnet-56 network for a variety of datasets

I We find a clear correlation with the intuitive dataset difficulty
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What is the origin of the rise in complexity?

I Is the switching behaviour of individual neurons becoming closer to
optimal (p = 0.5)?

I Is the switching increasingly independent?
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Total correlation

Question: Does the increase in complexity occur due to switching
behaviour being more close to optimal (p = 0.5) or due to increased
independence of the nonlinearities?
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Total correlation

Question: Does the increase in complexity occur due to switching
behaviour being more close to optimal (p = 0.5) or due to increased
independence of the nonlinearities?

normalized total correlation =
H(Z1) + . . .+ H(ZC )− H(Z1, . . .ZC )

H(Z1) + . . .+ H(ZC )
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Total correlation

Question: Does the increase in complexity occur due to switching
behaviour being more close to optimal (p = 0.5) or due to increased
independence of the nonlinearities?

For more complicated datasets, the higher level neurons fire in a more
independent way – they extract more independent features

33 / 35



Total correlation during training
I Since independent switching was the deciding factor for complexity

differences between various tasks, it is interesting to study its
buildup during training...

Clear power-law scaling!

I The scaling exponent is not universal – it seems to depend on the
dataset and learning rate

I It is a challenge to understand this behaviour!
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Summary

I We developed a flexible method for leveraging Machine Learning to
estimate entropy from Monte Carlo configurations

I ... by translating the problem into a sequence of classification tasks
I One can use any ML classification algorithm for that...
I We defined a notion of complexity for neural networks which

measures nonlinearity of information processing
I ... and a complementary measure of effective dimension of feature

representations
I Clear correlation with the intuitive difficulty of datasets

DNN as “holography” for probability distributions...

I Insights into training...
I There is room for fruitful exchanges between Machine Learning and

Physics
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