From Machine Learning to Physics, and back again...

Romuald A. Janik

Jagiellonian University Kraków

> RJ 1909.10831 RJ, P. Witaszczyk 2006.04791

What is Machine Learning?

From Machine Learning to Physics The problem of computing Entropy Entropy from Machine Learning 2D Ising model entropy/free energy from Monte Carlo @T

Interlude: Deep Convolutional Neural Networks

From Physics back to Machine Learning Deep Neural Networks and Physics – analogies Complexity and effective dimension for neural networks Numerical experiments

What is Machine Learning?

From Machine Learning to Physics

The problem of computing Entropy Entropy from Machine Learning 2D Ising model entropy/free energy from Monte Carlo @T

Interlude: Deep Convolutional Neural Networks

From Physics back to Machine Learning Deep Neural Networks and Physics – analogies Complexity and effective dimension for neural networks Numerical experiments

What is Machine Learning?

From Machine Learning to Physics

The problem of computing Entropy Entropy from Machine Learning 2D Ising model entropy/free energy from Monte Carlo @T

Interlude: Deep Convolutional Neural Networks

From Physics back to Machine Learning Deep Neural Networks and Physics – analogies Complexity and effective dimension for neural networks Numerical experiments

What is Machine Learning?

From Machine Learning to Physics

The problem of computing Entropy Entropy from Machine Learning 2D Ising model entropy/free energy from Monte Carlo @T

Interlude: Deep Convolutional Neural Networks

From Physics back to Machine Learning

Deep Neural Networks and Physics – analogies Complexity and effective dimension for neural networks Numerical experiments

What is Machine Learning?

From Machine Learning to Physics

The problem of computing Entropy Entropy from Machine Learning 2D Ising model entropy/free energy from Monte Carlo @T

Interlude: Deep Convolutional Neural Networks

From Physics back to Machine Learning

Deep Neural Networks and Physics – analogies Complexity and effective dimension for neural networks Numerical experiments

▶ Machine Learning comprises a set of algorithms which e.g.

- 1. given some set of example data points belonging to various classes,
- 2. learns based on these examples,
- 3. so that it can assign new unseen data points to these classes...
- ▶ The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- ▶ MNIST: The Hello World of Machine Learning...

Machine Learning comprises a set of algorithms which e.g.

1. given some set of example data points belonging to various classes,

- 2. learns based on these examples,
- 3. so that it can assign new unseen data points to these classes...
- ▶ The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- ▶ MNIST: The Hello World of Machine Learning...

- Machine Learning comprises a set of algorithms which e.g.
 - 1. given some set of example data points belonging to various classes,
 - 2. learns based on these examples,
 - 3. so that it can assign new unseen data points to these classes...
- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- ▶ MNIST: The Hello World of Machine Learning...

- Machine Learning comprises a set of algorithms which e.g.
 - 1. given some set of example data points belonging to various classes,
 - 2. learns based on these examples,
 - 3. so that it can assign new unseen data points to these classes...
- ▶ The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- ▶ MNIST: The Hello World of Machine Learning...

- Machine Learning comprises a set of algorithms which e.g.
 - 1. given some set of example data points belonging to various classes,
 - 2. learns based on these examples,
 - 3. so that it can assign new unseen data points to these classes...
- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- ▶ MNIST: The Hello World of Machine Learning...

- Machine Learning comprises a set of algorithms which e.g.
 - 1. given some set of example data points belonging to various classes,
 - 2. learns based on these examples,
 - 3. so that it can assign new unseen data points to these classes...
- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- ▶ MNIST: The Hello World of Machine Learning...

- Machine Learning comprises a set of algorithms which e.g.
 - 1. given some set of example data points belonging to various classes,
 - 2. learns based on these examples,
 - 3. so that it can assign new unseen data points to these classes...
- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..

▶ MNIST: The Hello World of Machine Learning...

8620236997

- Machine Learning comprises a set of algorithms which e.g.
 - 1. given some set of example data points belonging to various classes,
 - 2. learns based on these examples,
 - 3. so that it can assign new unseen data points to these classes...
- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- ▶ MNIST: The Hello World of Machine Learning...

8620236997

- Machine Learning comprises a set of algorithms which e.g.
 - 1. given some set of example data points belonging to various classes,
 - 2. learns based on these examples,
 - 3. so that it can assign new unseen data points to these classes...
- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- ▶ MNIST: The Hello World of Machine Learning...

8620236997

► ImageNet: state of the art...

1.2 million images (256×256+) in 1000 classes

There is now of course much more to ML (Reinforcement Learning (e.g. AlphaGo), GAN, language models etc.)...

► ImageNet: state of the art...

1.2 million images (256x256+) in 1000 classes

 There is now of course much more to ML (Reinforcement Learning (e.g. AlphaGo), GAN, language models etc.)...

- ▶ There is a wide variety of Machine Learning classification algorithms:
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosted Trees
 - Nearest Neighbours
 - Logistic Regression
- Consider now a two class problem:
 e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

There is a wide variety of Machine Learning classification algorithms:

- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
- Consider now a two class problem:
 e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

- There is a wide variety of Machine Learning classification algorithms:
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosted Trees
 - Nearest Neighbours
 - Logistic Regression
- Consider now a two class problem:
 e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

- ► There is a wide variety of Machine Learning classification algorithms:
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosted Trees
 - Nearest Neighbours
 - Logistic Regression
- Consider now a two class problem:
 e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

- ► There is a wide variety of Machine Learning classification algorithms:
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosted Trees
 - Nearest Neighbours
 - Logistic Regression
- Consider now a two class problem:
 e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

- ► There is a wide variety of Machine Learning classification algorithms:
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosted Trees
 - Nearest Neighbours
 - Logistic Regression

Consider now a two class problem:
 e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)

- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

- ► There is a wide variety of Machine Learning classification algorithms:
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosted Trees
 - Nearest Neighbours
 - Logistic Regression

Consider now a two class problem: e.g. images showing cats or dogs y = 1 (cat) y

- ► Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

- ► There is a wide variety of Machine Learning classification algorithms:
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosted Trees
 - Nearest Neighbours
 - Logistic Regression
- Consider now a two class problem:

e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)

- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

- ► There is a wide variety of Machine Learning classification algorithms:
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosted Trees
 - Nearest Neighbours
 - Logistic Regression
- Consider now a two class problem:
 e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

- ► There is a wide variety of Machine Learning classification algorithms:
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosted Trees
 - Nearest Neighbours
 - Logistic Regression
- Consider now a two class problem:
 e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

- ► There is a wide variety of Machine Learning classification algorithms:
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosted Trees
 - Nearest Neighbours
 - Logistic Regression
- Consider now a two class problem:
 e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

- ► There is a wide variety of Machine Learning classification algorithms:
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosted Trees
 - Nearest Neighbours
 - Logistic Regression
- Consider now a two class problem:
 e.g. images showing cats or dogs, y = 1 (cat), y = 0 (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is y = 1
- This is really the conditional probability

$$p(y = 1 | \underbrace{x_{11} \dots x_{ij} \dots x_{HW}}_{\text{pixels of the image}})$$

Why computing entropy is interesting?

Why computing entropy is interesting?

Monte-Carlo configurations

What is the free energy/entropy?

Spiking neurons

What is the information content?

Complexity for Neural Networks

Nontrivial in high dimension!

 \longrightarrow New method

Use entropy to define this!

Suppose that we have an *N*-dimensional binary signal $\{x_i\}_{i=1..N}$ coming from a probability distribution $p(x_1, x_2, ..., x_N)$.

The Shannon entropy is defined by

Key difficulty: Estimate $p(x_1, x_2, ..., x_N)$ from a set of *n* samples...

- Count the number of occurrencies k of a configuration $\{x_i\}_{i=1..N}$
- Estimate the probability of this configuration as

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

Suppose that we have an *N*-dimensional binary signal $\{x_i\}_{i=1..N}$ coming from a probability distribution $p(x_1, x_2, ..., x_N)$.

The Shannon entropy is defined by

Key difficulty: Estimate $p(x_1, x_2, ..., x_N)$ from a set of *n* samples...

- Count the number of occurrencies k of a configuration $\{x_i\}_{i=1..N}$
- Estimate the probability of this configuration as

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

Suppose that we have an *N*-dimensional binary signal $\{x_i\}_{i=1..N}$ coming from a probability distribution $p(x_1, x_2, ..., x_N)$.

The Shannon entropy is defined by

$$S = -\sum_{\{x_i\}_{i=1..N}} p(x_1, x_2, \dots, x_N) \log_2 p(x_1, x_2, \dots, x_N)$$

Key difficulty: Estimate $p(x_1, x_2, ..., x_N)$ from a set of *n* samples...

- Count the number of occurrencies k of a configuration $\{x_i\}_{i=1..N}$
- Estimate the probability of this configuration as

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

Suppose that we have an *N*-dimensional binary signal $\{x_i\}_{i=1..N}$ coming from a probability distribution $p(x_1, x_2, ..., x_N)$.

The Shannon entropy is defined by

$$S = -\sum_{\{x_i\}_{i=1..N}} p(x_1, x_2, \dots, x_N) \log_2 p(x_1, x_2, \dots, x_N)$$

Key difficulty: Estimate $p(x_1, x_2, ..., x_N)$ from a set of *n* samples...

- Count the number of occurrencies k of a configuration $\{x_i\}_{i=1..N}$
- Estimate the probability of this configuration as

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

Suppose that we have an *N*-dimensional binary signal $\{x_i\}_{i=1..N}$ coming from a probability distribution $p(x_1, x_2, ..., x_N)$. The Shannon entropy is defined by

$$S = -\langle \log_2 p(x_1, x_2, ..., x_N) \rangle \equiv -\frac{1}{n} \sum_{k=1}^n \log_2 p(x_1^{(k)}, x_2^{(k)}, ..., x_N^{(k)})$$

Key difficulty: Estimate $p(x_1, x_2, ..., x_N)$ from a set of *n* samples...

- Count the number of occurrencies k of a configuration $\{x_i\}_{i=1..N}$
- Estimate the probability of this configuration as

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$
Suppose that we have an *N*-dimensional binary signal $\{x_i\}_{i=1..N}$ coming from a probability distribution $p(x_1, x_2, ..., x_N)$. The Shannon entropy is defined by

$$S = -\langle \log_2 p(x_1, x_2, ..., x_N) \rangle \equiv -\frac{1}{n} \sum_{k=1}^n \log_2 p(x_1^{(k)}, x_2^{(k)}, ..., x_N^{(k)})$$

Key difficulty: Estimate $p(x_1, x_2, ..., x_N)$ from a set of *n* samples...

- Count the number of occurrencies k of a configuration $\{x_i\}_{i=1..N}$
- Estimate the probability of this configuration as

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

Suppose that we have an *N*-dimensional binary signal $\{x_i\}_{i=1..N}$ coming from a probability distribution $p(x_1, x_2, ..., x_N)$. The Shannon entropy is defined by

$$S = -\langle \log_2 p(x_1, x_2, ..., x_N) \rangle \equiv -\frac{1}{n} \sum_{k=1}^n \log_2 p(x_1^{(k)}, x_2^{(k)}, ..., x_N^{(k)})$$

Key difficulty: Estimate $p(x_1, x_2, ..., x_N)$ from a set of *n* samples...

- Count the number of occurrencies k of a configuration $\{x_i\}_{i=1..N}$
- Estimate the probability of this configuration as

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

Suppose that we have an *N*-dimensional binary signal $\{x_i\}_{i=1..N}$ coming from a probability distribution $p(x_1, x_2, ..., x_N)$. The Shannon entropy is defined by

$$S = -\langle \log_2 p(x_1, x_2, ..., x_N) \rangle \equiv -\frac{1}{n} \sum_{k=1}^n \log_2 p(x_1^{(k)}, x_2^{(k)}, ..., x_N^{(k)})$$

Key difficulty: Estimate $p(x_1, x_2, ..., x_N)$ from a set of *n* samples...

- Count the number of occurrencies k of a configuration $\{x_i\}_{i=1..N}$
- Estimate the probability of this configuration as

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

Suppose that we have an *N*-dimensional binary signal $\{x_i\}_{i=1..N}$ coming from a probability distribution $p(x_1, x_2, ..., x_N)$. The Shannon entropy is defined by

$$S = -\langle \log_2 p(x_1, x_2, ..., x_N) \rangle \equiv -\frac{1}{n} \sum_{k=1}^n \log_2 p(x_1^{(k)}, x_2^{(k)}, ..., x_N^{(k)})$$

Key difficulty: Estimate $p(x_1, x_2, ..., x_N)$ from a set of *n* samples...

- Count the number of occurrencies k of a configuration $\{x_i\}_{i=1..N}$
- Estimate the probability of this configuration as

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

Suppose that we have an *N*-dimensional binary signal $\{x_i\}_{i=1..N}$ coming from a probability distribution $p(x_1, x_2, ..., x_N)$. The Shannon entropy is defined by

$$S = -\langle \log_2 p(x_1, x_2, ..., x_N) \rangle \equiv -\frac{1}{n} \sum_{k=1}^n \log_2 p(x_1^{(k)}, x_2^{(k)}, ..., x_N^{(k)})$$

Key difficulty: Estimate $p(x_1, x_2, ..., x_N)$ from a set of *n* samples...

- Count the number of occurrencies k of a configuration $\{x_i\}_{i=1..N}$
- Estimate the probability of this configuration as

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

- ► As we increase the dimensionality *N*, the number of possible configurations grows as 2^{*N*}...
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- ▶ This is the generic situation in Physics simulations e.g. a 20 \times 20 2D Ising model has 2⁴⁰⁰ \sim 10¹²⁰ configurations
- ► All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at T ≥ 2.7

- ► As we increase the dimensionality *N*, the number of possible configurations grows as 2^N...
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- \blacktriangleright This is the generic situation in Physics simulations e.g. a 20 \times 20 2D Ising model has 2⁴⁰⁰ \sim 10¹²⁰ configurations
- ► All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at T ≥ 2.7

- ► As we increase the dimensionality *N*, the number of possible configurations grows as 2^N...
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- \blacktriangleright This is the generic situation in Physics simulations e.g. a 20 \times 20 2D Ising model has $2^{400} \sim 10^{120}$ configurations
- ► All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at T ≥ 2.7

- ► As we increase the dimensionality *N*, the number of possible configurations grows as 2^N...
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- ▶ This is the generic situation in Physics simulations e.g. a 20×20 2D Ising model has $2^{400} \sim 10^{120}$ configurations
- ► All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at T ≥ 2.7

- ► As we increase the dimensionality *N*, the number of possible configurations grows as 2^N...
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- ► This is the generic situation in Physics simulations e.g. a 20 × 20 2D Ising model has 2⁴⁰⁰ ~ 10¹²⁰ configurations
- ► All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at T ≥ 2.7

- ► As we increase the dimensionality *N*, the number of possible configurations grows as 2^N...
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- ► This is the generic situation in Physics simulations e.g. a 20 × 20 2D Ising model has 2⁴⁰⁰ ~ 10¹²⁰ configurations
- ► All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at T ≥ 2.7

In Physics we have the additional structure of a Boltzmann distribution:

$$PBoltzmann(x_1, x_2, ..., x_N) = \frac{1}{Z}e^{-\frac{1}{T}E(x_1, x_2, ..., x_N)}$$

- $E(x_1, x_2, ..., x_N)$ is typically easy to evaluate...
- ► ... but in log p(x₁, x₂, ..., x_N) we have log Z which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

$$F = -T \log Z = \langle E \rangle - TS$$

In Physics we have the additional structure of a Boltzmann distribution:

$$p_{Boltzmann}(x_1, x_2, \dots, x_N) = \frac{1}{Z} e^{-\frac{1}{T}E(x_1, x_2, \dots, x_N)}$$

- $E(x_1, x_2, ..., x_N)$ is typically easy to evaluate...
- ► ... but in log p(x₁, x₂, ..., x_N) we have log Z which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

 $F = -T \log Z = \langle E \rangle - TS$

In Physics we have the additional structure of a Boltzmann distribution:

$$p_{Boltzmann}(x_1, x_2, \dots, x_N) = \frac{1}{Z} e^{-\frac{1}{T}E(x_1, x_2, \dots, x_N)}$$

- $E(x_1, x_2, ..., x_N)$ is typically easy to evaluate...
- ► ... but in log p(x₁, x₂, ..., x_N) we have log Z which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

 $F = -T \log Z = \langle E \rangle - TS$

In Physics we have the additional structure of a Boltzmann distribution:

$$P_{Boltzmann}(x_1, x_2, \dots, x_N) = \frac{1}{Z} e^{-\frac{1}{T}E(x_1, x_2, \dots, x_N)}$$

- $E(x_1, x_2, ..., x_N)$ is typically easy to evaluate...
- ► ... but in log p(x₁, x₂, ..., x_N) we have log Z which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

 $F = -T \log Z = \langle E \rangle - TS$

In Physics we have the additional structure of a Boltzmann distribution:

$$P_{Boltzmann}(x_1, x_2, \dots, x_N) = \frac{1}{Z} e^{-\frac{1}{T}E(x_1, x_2, \dots, x_N)}$$

- $E(x_1, x_2, ..., x_N)$ is typically easy to evaluate...
- ► ... but in log p(x₁, x₂, ..., x_N) we have log Z which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

 $F = -T \log Z = \langle E \rangle - TS$

In Physics we have the additional structure of a Boltzmann distribution:

$$P_{Boltzmann}(x_1, x_2, \dots, x_N) = \frac{1}{Z} e^{-\frac{1}{T}E(x_1, x_2, \dots, x_N)}$$

- $E(x_1, x_2, ..., x_N)$ is typically easy to evaluate...
- ► ... but in log p(x₁, x₂, ..., x_N) we have log Z which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

$$F = -T \log Z = \langle E \rangle - TS$$

In Physics we have the additional structure of a Boltzmann distribution:

$$P_{Boltzmann}(x_1, x_2, \dots, x_N) = \frac{1}{Z} e^{-\frac{1}{T}E(x_1, x_2, \dots, x_N)}$$

- $E(x_1, x_2, ..., x_N)$ is typically easy to evaluate...
- ► ... but in log p(x₁, x₂, ..., x_N) we have log Z which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

$$F = -T \log Z = \langle E \rangle - TS$$

• Evaluate the heat capacity C(T) from the variance of the energy $\sigma_E^2(T)$ $C(T) = \frac{\partial \langle E \rangle}{\partial \langle E \rangle} = \frac{\sigma_E^2(T)}{\partial \langle E \rangle}$

▶ Obtain the entropy by a numerical integration over *T*:

$$S(T_0) = \int_0^{T_0} C(T) \frac{dT}{T}$$

▶ Need to perform separate Monte Carlo simulations for the whole range of temperatures from T = 0 to T = T₀

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states...

• Evaluate the heat capacity C(T) from the variance of the energy $\sigma_E^2(T)$ $C(T) = \frac{\partial \langle E \rangle}{\partial \langle E \rangle} = \frac{\sigma_E^2(T)}{\sigma_E^2(T)}$

▶ Obtain the entropy by a numerical integration over *T*:

$$S(T_0) = \int_0^{T_0} C(T) \frac{dT}{T}$$

▶ Need to perform separate Monte Carlo simulations for the whole range of temperatures from T = 0 to T = T₀

Wang-Landau sampling

- ▶ Does not use the original Monte Carlo configurations at all...
- ▶ Need to perform conceptually different Monte Carlo sampling to evaluate the density of states...

• Evaluate the heat capacity C(T) from the variance of the energy $\sigma_E^2(T)$

$$C(T) = \frac{\partial \langle E \rangle}{\partial T} = \frac{\sigma_E^2(T)}{T^2}$$

Obtain the entropy by a numerical integration over T:

$$S(T_0) = \int_0^{T_0} C(T) \frac{dT}{T}$$

▶ Need to perform separate Monte Carlo simulations for the whole range of temperatures from T = 0 to $T = T_0$

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states...

• Evaluate the heat capacity C(T) from the variance of the energy $\sigma_E^2(T)$

$$C(T) = \frac{\partial \langle E \rangle}{\partial T} = \frac{\sigma_E^2(T)}{T^2}$$

Obtain the entropy by a numerical integration over T:

$$S(T_0) = \int_0^{T_0} C(T) \frac{dT}{T}$$

▶ Need to perform separate Monte Carlo simulations for the whole range of temperatures from T = 0 to T = T₀

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states...

• Evaluate the heat capacity C(T) from the variance of the energy $\sigma_E^2(T)$

$$C(T) = \frac{\partial \langle E \rangle}{\partial T} = \frac{\sigma_E^2(T)}{T^2}$$

Obtain the entropy by a numerical integration over T:

$$S(T_0) = \int_0^{T_0} C(T) \frac{dT}{T}$$

Need to perform separate Monte Carlo simulations for the whole range of temperatures from T = 0 to T = T₀

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states...

• Evaluate the heat capacity C(T) from the variance of the energy $\sigma_E^2(T)$

$$C(T) = \frac{\partial \langle E \rangle}{\partial T} = \frac{\sigma_E^2(T)}{T^2}$$

Obtain the entropy by a numerical integration over T:

$$S(T_0) = \int_0^{T_0} C(T) \frac{dT}{T}$$

Need to perform separate Monte Carlo simulations for the whole range of temperatures from T = 0 to T = T₀

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states...

• Evaluate the heat capacity C(T) from the variance of the energy $\sigma_E^2(T)$

$$C(T) = \frac{\partial \langle E \rangle}{\partial T} = \frac{\sigma_E^2(T)}{T^2}$$

Obtain the entropy by a numerical integration over T:

$$S(T_0) = \int_0^{T_0} C(T) \frac{dT}{T}$$

Need to perform separate Monte Carlo simulations for the whole range of temperatures from T = 0 to T = T₀

Wang-Landau sampling

Wang, Landau '01

Does not use the original Monte Carlo configurations at all..

Need to perform conceptually different Monte Carlo sampling to evaluate the density of states...

• Evaluate the heat capacity C(T) from the variance of the energy $\sigma_E^2(T)$

$$C(T) = \frac{\partial \langle E \rangle}{\partial T} = \frac{\sigma_E^2(T)}{T^2}$$

Obtain the entropy by a numerical integration over T:

$$S(T_0) = \int_0^{T_0} C(T) \frac{dT}{T}$$

Need to perform separate Monte Carlo simulations for the whole range of temperatures from T = 0 to T = T₀

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

- **1**. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
- **2.** Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

The formula using occurrence counts

$$S = -\sum_{\{x_i\}_{i=1..N}} p(x_1, x_2, \dots, x_N) \log_2 p(x_1, x_2, \dots, x_N)$$

with

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

treats each configuration as a structureless "atomic" object.

This approach: Analyze instead the internal structure of the configurations...

The formula using occurrence counts

$$S = -\sum_{\{x_i\}_{i=1..N}} p(x_1, x_2, \dots, x_N) \log_2 p(x_1, x_2, \dots, x_N)$$

with

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

treats each configuration as a structureless "atomic" object.

This approach: Analyze instead the internal structure of the configurations...

The formula using occurrence counts

$$S = -\sum_{\{x_i\}_{i=1..N}} p(x_1, x_2, \dots, x_N) \log_2 p(x_1, x_2, \dots, x_N)$$

with

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

treats each configuration as a structureless "atomic" object.

This approach: Analyze instead the internal structure of the configurations...

The formula using occurrence counts

$$S = -\sum_{\{x_i\}_{i=1..N}} p(x_1, x_2, \dots, x_N) \log_2 p(x_1, x_2, \dots, x_N)$$

with

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

treats each configuration as a structureless "atomic" object.

This approach: Analyze instead the internal structure of the configurations...

The formula using occurrence counts

$$S = -\sum_{\{x_i\}_{i=1..N}} p(x_1, x_2, \dots, x_N) \log_2 p(x_1, x_2, \dots, x_N)$$

with

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

treats each configuration as a structureless "atomic" object.

This approach: Analyze instead **the internal structure** of the configurations...

The formula using occurrence counts

$$S = -\sum_{\{x_i\}_{i=1..N}} p(x_1, x_2, \dots, x_N) \log_2 p(x_1, x_2, \dots, x_N)$$

with

$$p(x_1, x_2, \ldots, x_N) = \frac{k}{n}$$

treats each configuration as a structureless "atomic" object.

This approach: Analyze instead **the internal structure** of the configurations...

Start from the exact rewriting

 $p(x_1, x_2, \ldots, x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \cdot \ldots$

► Shannon's entropy $\langle -log_2 p \rangle$ decomposes into a sum of *N* terms $S = S_1 + \Delta S_2 + \Delta S_3 + \dots \Delta S_N$

▶ The first term is just the entropy of the first neuron/spin

 $S_1 = -\langle \log_2 p(x_1) \rangle \equiv -p_1 \log_2 p_1 - (1 - p_1) \log_2 (1 - p_1)$

where $p_1 \equiv p(x_1 = 1)$.

▶ The second term is more interesting...

Start from the exact rewriting

 $p(x_1, x_2, \ldots, x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \cdot \ldots$

► Shannon's entropy $\langle -log_2 p \rangle$ decomposes into a sum of N terms $S = S_1 + \Delta S_2 + \Delta S_3 + \ldots \Delta S_N$

▶ The first term is just the entropy of the first neuron/spin

 $S_1 = -\langle \log_2 p(x_1) \rangle \equiv -p_1 \log_2 p_1 - (1 - p_1) \log_2 (1 - p_1)$

where $p_1 \equiv p(x_1 = 1)$.

▶ The second term is more interesting...

Start from the exact rewriting

 $p(x_1, x_2, \ldots, x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \cdot \ldots$

► Shannon's entropy $\langle -log_2 p \rangle$ decomposes into a sum of *N* terms $S = S_1 + \Delta S_2 + \Delta S_3 + \dots \Delta S_N$

▶ The first term is just the entropy of the first neuron/spin

 $S_1 = -\langle \log_2 p(x_1) \rangle \equiv -p_1 \log_2 p_1 - (1 - p_1) \log_2 (1 - p_1)$

where $p_1 \equiv p(x_1 = 1)$.

▶ The second term is more interesting...

Start from the exact rewriting

 $p(x_1, x_2, \ldots, x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \cdot \ldots$

► Shannon's entropy $\langle -log_2 p \rangle$ decomposes into a sum of N terms $S = S_1 + \Delta S_2 + \Delta S_3 + \ldots \Delta S_N$

▶ The first term is just the entropy of the first neuron/spin

 $S_1 = -\langle \log_2 p(x_1) \rangle \equiv -p_1 \log_2 p_1 - (1 - p_1) \log_2 (1 - p_1)$

where $p_1 \equiv p(x_1 = 1)$.

▶ The second term is more interesting...

Start from the exact rewriting

 $p(x_1, x_2, \ldots, x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \cdot \ldots$

► Shannon's entropy $\langle -log_2 p \rangle$ decomposes into a sum of N terms $S = S_1 + \Delta S_2 + \Delta S_3 + \dots \Delta S_N$

The first term is just the entropy of the first neuron/spin

 $S_1 = -\langle \log_2 p(x_1) \rangle \equiv -p_1 \log_2 p_1 - (1 - p_1) \log_2(1 - p_1)$

where $p_1 \equiv p(x_1 = 1)$.

The second term is more interesting...

Start from the exact rewriting

 $p(x_1, x_2, \ldots, x_N) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \cdot \ldots$

Shannon's entropy $\langle -log_2 p \rangle$ decomposes into a sum of N terms $S = S_1 + \Delta S_2 + \Delta S_3 + \dots \Delta S_N$

The first term is just the entropy of the first neuron/spin

 $S_1 = -\langle \log_2 p(x_1) \rangle \equiv -p_1 \log_2 p_1 - (1 - p_1) \log_2(1 - p_1)$

where $p_1 \equiv p(x_1 = 1)$.

The second term is more interesting...

 $\Delta S_2 = - \left\langle \log_2 p(x_2 | x_1) \right\rangle$

 $\Delta S_2 = -\left<\log_2 p(x_2|x_1)\right>$

- ▶ p(x₂|x₁) (and p(x₃|x₁, x₂) etc.) is exactly a conditional probability distribution of the kind which is well computed by machine learning classifiers!
- It corresponds to predicting the spin x₂ based on the value of the spin x₁ interpreted as classification problems

Moreover

 $\Delta S_2 = -\langle \log_2 p(x_2|x_1) \rangle$

is the **cross-entropy loss** of that machine learning classification problem

 $\Delta S_2 = -\left\langle \log_2 p(x_2|x_1) \right\rangle$

▶ p(x₂|x₁) (and p(x₃|x₁, x₂) etc.) is exactly a conditional probability distribution of the kind which is well computed by machine learning classifiers!

It corresponds to predicting the spin x₂ based on the value of the spin x₁ interpreted as classification problems

Moreover

 $\Delta S_2 = -\langle \log_2 p(x_2|x_1) \rangle$

is the **cross-entropy loss** of that machine learning classification problem

 $\Delta S_2 = -\left\langle \log_2 p(x_2|x_1) \right\rangle$

- ▶ p(x₂|x₁) (and p(x₃|x₁, x₂) etc.) is exactly a conditional probability distribution of the kind which is well computed by machine learning classifiers!
- It corresponds to predicting the spin x₂ based on the value of the spin x₁ interpreted as classification problems

Moreover

 $\Delta S_2 = -\left\langle \log_2 p(x_2|x_1) \right\rangle$

is the **cross-entropy loss** of that machine learning classification problem

 $\Delta S_2 = -\left\langle \log_2 p(x_2|x_1) \right\rangle$

- ▶ p(x₂|x₁) (and p(x₃|x₁, x₂) etc.) is exactly a conditional probability distribution of the kind which is well computed by machine learning classifiers!
- It corresponds to predicting the spin x₂ based on the value of the spin x₁ interpreted as classification problems
- Moreover

 $\Delta S_2 = -\langle \log_2 p(x_2|x_1) \rangle$

is the **cross-entropy loss** of that machine learning classification problem

 $\Delta S_2 = -\left<\log_2 p(x_2|x_1)\right>$

- ▶ p(x₂|x₁) (and p(x₃|x₁, x₂) etc.) is exactly a conditional probability distribution of the kind which is well computed by machine learning classifiers!
- It corresponds to predicting the spin x₂ based on the value of the spin x₁ interpreted as classification problems
- Moreover

$$\Delta S_2 = -\left\langle \log_2 p(x_2|x_1) \right\rangle$$

is the **cross-entropy loss** of that machine learning classification problem

The resulting prescription

An estimate of the entropy is given by

$S = S_1 + \Delta S_2 + \Delta S_3 + \dots \Delta S_N$

- ► This is a sum of cross-entropy losses of a sequence of supervised classification problems where we predict the probability of x_j = 1 given the values of the previous spins x₁, x₂,..., x_{j-1}.
- One can use any machine learning classification algorithm to compute the entropy

The resulting prescription

An estimate of the entropy is given by

$S = S_1 + \Delta S_2 + \Delta S_3 + \dots \Delta S_N$

- ► This is a sum of cross-entropy losses of a sequence of supervised classification problems where we predict the probability of x_j = 1 given the values of the previous spins x₁, x₂,..., x_{j-1}.
- One can use any machine learning classification algorithm to compute the entropy

The resulting prescription

An estimate of the entropy is given by

$S = S_1 + \Delta S_2 + \Delta S_3 + \ldots \Delta S_N$

- ► This is a sum of cross-entropy losses of a sequence of supervised classification problems where we predict the probability of x_j = 1 given the values of the previous spins x₁, x₂,..., x_{j-1}.
- One can use any machine learning classification algorithm to compute the entropy

The resulting prescription

An estimate of the entropy is given by

$S = S_1 + \Delta S_2 + \Delta S_3 + \ldots \Delta S_N$

- ► This is a sum of cross-entropy losses of a sequence of supervised classification problems where we predict the probability of x_j = 1 given the values of the previous spins x₁, x₂,..., x_{j-1}.
- One can use any machine learning classification algorithm to compute the entropy

The resulting prescription

An estimate of the entropy is given by

$S = S_1 + \Delta S_2 + \Delta S_3 + \ldots \Delta S_N$

- ► This is a sum of cross-entropy losses of a sequence of supervised classification problems where we predict the probability of x_j = 1 given the values of the previous spins x₁, x₂,..., x_{j-1}.
- One can use any machine learning classification algorithm to compute the entropy

$$S_{true} = -\langle \log_2 p_{true} \rangle_{true} \leq -\langle \log_2 p_{ML} \rangle_{true}$$

- One can therefore consider this as a variational bound for entropy...
- In but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (*logistic regression*) and nonlinear ML classifiers gives novel kind of information on the complexity of data...

$$S_{true} = -\langle \log_2 p_{true} \rangle_{true} \leq -\langle \log_2 p_{ML} \rangle_{true}$$

- One can therefore consider this as a variational bound for entropy...
- In but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (*logistic regression*) and nonlinear ML classifiers gives novel kind of information on the complexity of data...

$$S_{true} = -\langle \log_2 p_{true} \rangle_{true} \leq -\langle \log_2 p_{ML} \rangle_{true}$$

- One can therefore consider this as a variational bound for entropy...
- In but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (*logistic regression*) and nonlinear ML classifiers gives novel kind of information on the complexity of data...

$$S_{true} = -\langle \log_2 p_{true} \rangle_{true} \leq -\langle \log_2 p_{ML} \rangle_{true}$$

- One can therefore consider this as a variational bound for entropy...
- ... but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (*logistic regression*) and nonlinear ML classifiers gives novel kind of information on the complexity of data...

$$S_{true} = -\langle \log_2 p_{true} \rangle_{true} \leq -\langle \log_2 p_{ML} \rangle_{true}$$

- One can therefore consider this as a variational bound for entropy...
- ... but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (*logistic regression*) and nonlinear ML classifiers gives novel kind of information on the complexity of data...

$$S_{true} = -\langle \log_2 p_{true} \rangle_{true} \leq -\langle \log_2 p_{ML} \rangle_{true}$$

- One can therefore consider this as a variational bound for entropy...
- ... but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (*logistic regression*) and nonlinear ML classifiers gives novel kind of information on the complexity of data...

- ► The specific classification problems depend on the ordering of the spins x₁, x₂,..., x_N
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- ▶ A standard way to sidestep this issue is to use *k*-fold cross-validation

- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem

- ► The specific classification problems depend on the ordering of the spins x₁, x₂,..., x_N
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use *k*-fold cross-validation

- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem

- ► The specific classification problems depend on the ordering of the spins x₁, x₂,..., x_N
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use *k*-fold cross-validation

- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem

- ► The specific classification problems depend on the ordering of the spins x₁, x₂,..., x_N
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use k-fold cross-validation

- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem
- ► The specific classification problems depend on the ordering of the spins x₁, x₂,..., x_N
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use k-fold cross-validation

from scikit-learn docs

- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem

- ► The specific classification problems depend on the ordering of the spins x₁, x₂,..., x_N
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- ▶ A standard way to sidestep this issue is to use *k*-fold cross-validation

from scikit-learn docs

- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem

- ► The specific classification problems depend on the ordering of the spins x₁, x₂,..., x_N
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- ▶ A standard way to sidestep this issue is to use *k*-fold cross-validation

from scikit-learn docs

... and use only the predictions on the test folds...

refinement: shuffle the data differently for each classification problem

- ► The specific classification problems depend on the ordering of the spins x₁, x₂,..., x_N
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- ▶ A standard way to sidestep this issue is to use *k*-fold cross-validation

from scikit-learn docs

- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem

- ► The specific classification problems depend on the ordering of the spins x₁, x₂,..., x_N
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- ▶ A standard way to sidestep this issue is to use *k*-fold cross-validation

from scikit-learn docs

- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem

2D Ising model:

- Has two phases and a critical point in between...
- ► There is a generalization of the Onsager solution to an exact solution on a periodic L × L lattice due to Kaufman
- ► At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20 × 20 lattice
- We consider a range of temperatures T = 1.0 to T = 4.0 ($T_c \sim 2.269...$) covering both phases
- ► There are ~ 10¹²⁰ possible configurations, for T ≥ 2.7 the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

2D Ising model:

- Has two phases and a critical point in between...
- ► There is a generalization of the Onsager solution to an exact solution on a periodic L × L lattice due to Kaufman
- ► At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20 × 20 lattice
- We consider a range of temperatures T = 1.0 to T = 4.0 ($T_c \sim 2.269...$) covering both phases
- ► There are ~ 10¹²⁰ possible configurations, for T ≥ 2.7 the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

2D Ising model:

- Has two phases and a critical point in between...
- ► There is a generalization of the Onsager solution to an exact solution on a periodic L × L lattice due to Kaufman
- ► At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20 × 20 lattice
- We consider a range of temperatures T = 1.0 to T = 4.0 ($T_c \sim 2.269...$) covering both phases
- ► There are ~ 10¹²⁰ possible configurations, for T ≥ 2.7 the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

2D Ising model:

- Has two phases and a critical point in between...
- ► There is a generalization of the Onsager solution to an exact solution on a periodic L × L lattice due to Kaufman
- ► At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20 × 20 lattice
- We consider a range of temperatures T = 1.0 to T = 4.0 ($T_c \sim 2.269...$) covering both phases
- There are ~ 10¹²⁰ possible configurations, for T ≥ 2.7 the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

2D Ising model:

- Has two phases and a critical point in between...
- ► There is a generalization of the Onsager solution to an exact solution on a periodic L × L lattice due to Kaufman
- ► At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20 × 20 lattice
- We consider a range of temperatures T = 1.0 to T = 4.0 ($T_c \sim 2.269...$) covering both phases
- ► There are ~ 10¹²⁰ possible configurations, for T ≥ 2.7 the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

2D Ising model:

- Has two phases and a critical point in between...
- ► There is a generalization of the Onsager solution to an exact solution on a periodic L × L lattice due to Kaufman
- ► At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20 × 20 lattice
- We consider a range of temperatures T = 1.0 to T = 4.0 ($T_c \sim 2.269...$) covering both phases
- ► There are ~ 10¹²⁰ possible configurations, for T ≥ 2.7 the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

2D Ising model:

- Has two phases and a critical point in between...
- ► There is a generalization of the Onsager solution to an exact solution on a periodic L × L lattice due to Kaufman
- ► At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20 × 20 lattice
- We consider a range of temperatures T = 1.0 to T = 4.0 ($T_c \sim 2.269...$) covering both phases
- ► There are ~ 10¹²⁰ possible configurations, for T ≥ 2.7 the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

2D Ising model:

Evaluate the entropy and free energy from Monte Carlo configurations of the 2D Ising model

- Has two phases and a critical point in between...
- ► There is a generalization of the Onsager solution to an exact solution on a periodic L × L lattice due to Kaufman
- ► At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20 × 20 lattice
- We consider a range of temperatures T = 1.0 to T = 4.0 ($T_c \sim 2.269...$) covering both phases
- ► There are ~ 10¹²⁰ possible configurations, for T ≥ 2.7 the Monte Carlo samples involve only distinct configurations...

We choose a random ordering of the lattice sites for the classification problems

2D Ising model:

- Has two phases and a critical point in between...
- ► There is a generalization of the Onsager solution to an exact solution on a periodic L × L lattice due to Kaufman
- ► At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20 × 20 lattice
- We consider a range of temperatures T = 1.0 to T = 4.0 ($T_c \sim 2.269...$) covering both phases
- ► There are ~ 10¹²⁰ possible configurations, for T ≥ 2.7 the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

2D Ising model

Entropy (per spin)

2D Ising model

Free energy (per spin) — from $F = \langle E \rangle - TS$

From Physics back to Machine Learning...

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

Contemporary DCNN are much deeper > 50 layers...

- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

Contemporary DCNN are much deeper > 50 layers...

- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

MERA

AdS/CFT

DCNN

cf. Hashimoto

MERA

AdS/CFT

cf Hashimoto

represents a quantum wavefunction

DCNN

MERA

represents a quantum wavefunction

DCNN

cf. Hashimoto

AdS/CFT

MERA

represents a quantum wavefunction

AdS/CFT -dmensional Autode Sitter spacetime conformal field theory (CFT) gravitational theory (string theory)

represents a QFT

DCNN

cf. Hashimoto

5th dimension

MERA

represents a QFT

DCNN

cf. Hashimoto

MERA

represents a quantum wavefunction

represents a QFT

DCNN

cf. Hashimoto

MERA

represents a quantum wavefunction

represents a QFT

DCNN

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) – here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network \sim "holography" for complex probability distributions

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) – here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network \sim "holography" for complex probability distributions

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) – here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network \sim "holography" for complex probability distributions

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) – here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network \sim "holography" for complex probability distributions
General questions:

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) – here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network \sim "holography" for complex probability distributions

look for an analog of complexity...

General questions:

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) – here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network ~ "holography" for complex probability distributions

look for an analog of complexity...

General questions:

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) – here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network ~ "holography" for complex probability distributions

look for an analog of complexity...

Complexity in ~tensor networks and holography

Circuit complexity

Pick some family of elementary unitary operators ("gates")

 $|\Psi\rangle = U_1 \circ U_2 \circ U_3 \circ \ldots \circ U_n |REF\rangle$

Define complexity as

$$complexity \propto (\log?) min \sum_{i} cost(U_i)$$

Holography

Complexity proportional to spatial volume

Susskind

complexity
$$\propto V_{\perp}\int dz\sqrt{g}$$

 \blacktriangleright "additive" over scales \longrightarrow look at something additive over layers...

Pick some family of elementary unitary operators ("gates")

 $|\Psi\rangle = U_1 \circ U_2 \circ U_3 \circ \ldots \circ U_n |REF\rangle$

Define complexity as

complexity
$$\propto$$
 (log?) min $\sum_{i} cost(U_i)$

Holography

Complexity proportional to spatial volume

Susskind

complexity
$$\propto V_{\perp}\int dz\sqrt{g}$$

 \blacktriangleright "additive" over scales \longrightarrow look at something additive over layers...

Pick some family of elementary unitary operators ("gates")

 $|\Psi\rangle = U_1 \circ U_2 \circ U_3 \circ \ldots \circ U_n |REF\rangle$

Define complexity as

$$complexity \propto (\log?) min \sum_{i} cost(U_i)$$

Holography

Complexity proportional to spatial volume

Susskind

complexity
$$\propto V_{\perp}\int dz\sqrt{g}$$

 \blacktriangleright "additive" over scales \longrightarrow look at something additive over layers...

Pick some family of elementary unitary operators ("gates")

 $|\Psi\rangle = U_1 \circ U_2 \circ U_3 \circ \ldots \circ U_n |REF\rangle$

Define complexity as

complexity
$$\propto$$
 (log?) min $\sum_{i} cost(U_i)$

Holography

Complexity proportional to spatial volume

Susskind

complexity
$$\propto V_{\perp}\int dz\sqrt{g}$$

 \blacktriangleright "additive" over scales \longrightarrow look at something additive over layers...

Pick some family of elementary unitary operators ("gates")

 $|\Psi\rangle = U_1 \circ U_2 \circ U_3 \circ \ldots \circ U_n |REF\rangle$

Define complexity as

$$complexity \propto (\log?) min \sum_{i} cost(U_i)$$

Holography

Complexity proportional to spatial volume

Susskind

complexity
$$\propto V_{\perp}\int dz\sqrt{g}$$

 \blacktriangleright "additive" over scales \longrightarrow look at something additive over layers...

Pick some family of elementary unitary operators ("gates")

 $|\Psi\rangle = U_1 \circ U_2 \circ U_3 \circ \ldots \circ U_n |REF\rangle$

Define complexity as

$$complexity \propto (\log?) min \sum_{i} cost(U_i)$$

Holography

Complexity proportional to spatial volume

Susskind

complexity
$$\propto V_{\perp}\int dz\sqrt{g}$$

 \blacktriangleright "additive" over scales \longrightarrow look at something additive over layers...

Pick some family of elementary unitary operators ("gates")

 $|\Psi\rangle = U_1 \circ U_2 \circ U_3 \circ \ldots \circ U_n |REF\rangle$

Define complexity as

$$complexity \propto (\log?) min \sum_{i} cost(U_i)$$

Holography

Complexity proportional to spatial volume

Susskind

complexity
$$\propto V_{\perp}\int dz \sqrt{g}$$

 \blacktriangleright "additive" over scales \longrightarrow look at something additive over layers...

Pick some family of elementary unitary operators ("gates")

 $|\Psi\rangle = U_1 \circ U_2 \circ U_3 \circ \ldots \circ U_n |REF\rangle$

Define complexity as

$$complexity \propto (\log?) min \sum_{i} cost(U_i)$$

Holography

Complexity proportional to spatial volume

Susskind

complexity
$$\propto V_{\perp}\int dz \sqrt{g}$$

▶ "additive" over scales → look at something additive over layers...

Pick some family of elementary unitary operators ("gates")

 $|\Psi\rangle = U_1 \circ U_2 \circ U_3 \circ \ldots \circ U_n |REF\rangle$

Define complexity as

$$complexity \propto (\log?) min \sum_{i} cost(U_i)$$

Holography

Complexity proportional to spatial volume

Susskind

complexity
$$\propto V_{\perp}\int dz\sqrt{g}$$

 \blacktriangleright "additive" over scales \longrightarrow look at something additive over layers...

use these only as intuitions...

25 / 35

Pick some family of elementary unitary operators ("gates")

 $|\Psi\rangle = U_1 \circ U_2 \circ U_3 \circ \ldots \circ U_n |REF\rangle$

Define complexity as

$$complexity \propto (\log?) min \sum_{i} cost(U_i)$$

Holography

Complexity proportional to spatial volume

Susskind

complexity
$$\propto V_{\perp}\int dz\sqrt{g}$$

 \blacktriangleright "additive" over scales \longrightarrow look at something additive over layers...

Do not count parameters but estimate the complexity of a **particular computation** – **the neural network architecture is kept fixed**!

▶ In modern neural networks we have typically ReLU neurons

$$y_k = ReLU(W_{ki}x_i + b_k)$$

which act either as a linear function or as zero

It does not make sense to count gates which collapse under composition

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Do not count parameters but estimate the complexity of a **particular computation** – the neural network architecture is kept fixed!

▶ In modern neural networks we have typically ReLU neurons

 $y_k = ReLU(W_{ki}x_i + b_k)$

which act either as a linear function or as zero

It does not make sense to count gates which collapse under composition

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Do not count parameters but estimate the complexity of a **particular computation** – the neural network architecture is kept fixed!

▶ In modern neural networks we have typically ReLU neurons

 $y_k = ReLU(W_{ki}x_i + b_k)$

which act either as a linear function or as zero

It does not make sense to count gates which collapse under composition

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Do not count parameters but estimate the complexity of a **particular computation** – the neural network architecture is kept fixed!

▶ In modern neural networks we have typically ReLU neurons

 $y_k = ReLU(W_{ki}x_i + b_k)$

which act either as a linear function or as zero

It does not make sense to count gates which collapse under composition

- ▶ Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Do not count parameters but estimate the complexity of a **particular computation** – the neural network architecture is kept fixed!

▶ In modern neural networks we have typically ReLU neurons

$$y_k = ReLU(W_{ki}x_i + b_k)$$

which act either as a linear function or as zero

It does not make sense to count gates which collapse under composition

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Do not count parameters but estimate the complexity of a **particular computation** – the neural network architecture is kept fixed!

▶ In modern neural networks we have typically ReLU neurons

$$y_k = ReLU(W_{ki}x_i + b_k)$$

which act either as a linear function or as zero

It does not make sense to count gates which collapse under composition

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Do not count parameters but estimate the complexity of a **particular computation** – the neural network architecture is kept fixed!

▶ In modern neural networks we have typically ReLU neurons

$$y_k = ReLU(W_{ki}x_i + b_k)$$

which act either as a linear function or as zero

It does not make sense to count gates which collapse under composition

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Do not count parameters but estimate the complexity of a **particular computation** – the neural network architecture is kept fixed!

▶ In modern neural networks we have typically ReLU neurons

$$y_k = ReLU(W_{ki}x_i + b_k)$$

which act either as a linear function or as zero

It does not make sense to count gates which collapse under composition

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

• Define a binary **nonlinearity** variable $(z_k = 1 \text{ on}, z_k = 0 \text{ off})$

 $z_k = \theta(W_{ki}x_i + b_k)$

Define the complexity of a layer as the Shannon entropy of the nonlinearities z_k:

complexity \equiv **entropy** of nonlinearity

- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer...

• Define a binary **nonlinearity** variable $(z_k = 1 \text{ on}, z_k = 0 \text{ off})$

$$z_k = \theta(W_{ki}x_i + b_k)$$

Define the complexity of a layer as the Shannon entropy of the nonlinearities z_k:

complexity \equiv **entropy** of nonlinearity

- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer...

• Define a binary **nonlinearity** variable $(z_k = 1 \text{ on}, z_k = 0 \text{ off})$

$$z_k = \theta(W_{ki}x_i + b_k)$$

Define the complexity of a layer as the Shannon entropy of the nonlinearities z_k:

complexity \equiv entropy of nonlinearity

- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer...

• Define a binary **nonlinearity** variable $(z_k = 1 \text{ on}, z_k = 0 \text{ off})$

$$z_k = \theta(W_{ki}x_i + b_k)$$

Define the complexity of a layer as the Shannon entropy of the nonlinearities z_k:

complexity \equiv entropy of nonlinearity

- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer...

• Define a binary **nonlinearity** variable $(z_k = 1 \text{ on}, z_k = 0 \text{ off})$

$$z_k = \theta(W_{ki}x_i + b_k)$$

Define the complexity of a layer as the Shannon entropy of the nonlinearities z_k:

complexity \equiv entropy of nonlinearity

- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer...

• Define a binary **nonlinearity** variable $(z_k = 1 \text{ on}, z_k = 0 \text{ off})$

$$z_k = \theta(W_{ki}x_i + b_k)$$

Define the complexity of a layer as the Shannon entropy of the nonlinearities z_k:

complexity \equiv entropy of nonlinearity

- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer...

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

- 1. Compute the PCA of the layer output
- **2.** Get the variance ratio explained r_i $(\sum r_i = 1)$
- **3.** Compute Shannon entropy of the r_i 's
- 4. Define

- Complexity by design ignored details of linear operation of the network...
- ► To capture information on the linear regime, introduce a complementary observable **effective dimension** of the feature representation of the given layer...

Algorithm:

- 1. Compute the PCA of the layer output
- **2.** Get the variance ratio explained r_i $(\sum r_i = 1)$
- **3.** Compute Shannon entropy of the r_i 's
- 4. Define

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

- 1. Compute the PCA of the layer output
- **2.** Get the variance ratio explained r_i $(\sum r_i = 1)$
- **3.** Compute Shannon entropy of the r_i 's
- 4. Define

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

- 1. Compute the PCA of the layer output
- **2.** Get the variance ratio explained r_i $(\sum r_i = 1)$
- **3.** Compute Shannon entropy of the r_i 's
- 4. Define

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

- **1.** Compute the PCA of the layer output
- **2.** Get the variance ratio explained r_i $(\sum r_i = 1)$
- **3.** Compute Shannon entropy of the r_i 's
- 4. Define

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

1. Compute the PCA of the layer output

- **2.** Get the variance ratio explained r_i $(\sum r_i = 1)$
- 3. Compute Shannon entropy of the r_i's
- 4. Define

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

- 1. Compute the PCA of the layer output
- 2. Get the variance ratio explained r_i $(\sum r_i = 1)$
- **3.** Compute Shannon entropy of the r_i 's
- 4. Define

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

- 1. Compute the PCA of the layer output
- 2. Get the variance ratio explained r_i $(\sum r_i = 1)$
- **3.** Compute Shannon entropy of the r_i 's
- 4. Define

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

- 1. Compute the PCA of the layer output
- 2. Get the variance ratio explained r_i $(\sum r_i = 1)$
- 3. Compute Shannon entropy of the r_i's
- 4. Define
Numerical experiments

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

Dataset difficulty

We evaluated complexity and effective dimension averaged over the topmost layers of the resnet-56 network for a variety of datasets

▶ We find a clear correlation with the intuitive dataset difficulty

Dataset difficulty

We evaluated complexity and effective dimension averaged over the topmost layers of the resnet-56 network for a variety of datasets

We find a clear correlation with the intuitive dataset difficulty

Dataset difficulty

We evaluated complexity and effective dimension averaged over the topmost layers of the resnet-56 network for a variety of datasets

We find a clear correlation with the intuitive dataset difficulty

What is the origin of the rise in complexity?

- Is the switching behaviour of individual neurons becoming closer to optimal (p = 0.5)?
- Is the switching increasingly independent?

What is the origin of the rise in complexity?

- Is the switching behaviour of individual neurons becoming closer to optimal (p = 0.5)?
- ▶ Is the switching increasingly independent?

What is the origin of the rise in complexity?

- Is the switching behaviour of individual neurons becoming closer to optimal (p = 0.5)?
- Is the switching increasingly independent?

normalized total correlation =
$$\frac{H(Z_1) + \ldots + H(Z_C) - H(Z_1, \ldots, Z_C)}{H(Z_1) + \ldots + H(Z_C)}$$

Question: Does the increase in complexity occur due to switching behaviour being more close to optimal (p = 0.5) or due to increased **independence** of the nonlinearities?

For more complicated datasets, the higher level neurons fire in a more independent way – they extract more independent features

Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training...

- The scaling exponent is not universal it seems to depend on the dataset and learning rate
- It is a challenge to understand this behaviour!

Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training...

- The scaling exponent is not universal it seems to depend on the dataset and learning rate
- It is a challenge to understand this behaviour!

Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training...

- The scaling exponent is not universal it seems to depend on the dataset and learning rate
- It is a challenge to understand this behaviour!

Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training...

- The scaling exponent is not universal it seems to depend on the dataset and learning rate
- It is a challenge to understand this behaviour!

Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training...

- The scaling exponent is not universal it seems to depend on the dataset and learning rate
- It is a challenge to understand this behaviour!

Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training...

- The scaling exponent is not universal it seems to depend on the dataset and learning rate
- It is a challenge to understand this behaviour!

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- ► We defined a notion of *complexity* for neural networks which measures nonlinearity of information processing
- In and a complementary measure of *effective dimension* of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- ► We defined a notion of *complexity* for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of *effective dimension* of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- ▶ One can use any ML classification algorithm for that...
- ► We defined a notion of *complexity* for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of *effective dimension* of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of *complexity* for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of *effective dimension* of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of *complexity* for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of *effective dimension* of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of *complexity* for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of *effective dimension* of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of *complexity* for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of *effective dimension* of feature representations
- Clear correlation with the intuitive difficulty of datasets

DNN as "holography" for probability distributions...

- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of *complexity* for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of *effective dimension* of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of *complexity* for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of *effective dimension* of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of *complexity* for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of *effective dimension* of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics