From Machine Learning to Physics, and back again...

Romuald A. Janik
Jagiellonian University
Kraków

RJ 1909.10831
RJ, P. Witaszczyk 2006.04791

Outline

What is Machine Learning?

```
From Machine Learning to Physics
    The problem of computing Entropy
    Entropy from Machine Learning
    2D Ising model entropy/free energy from Monte Carlo @T
Interlude: Deep Convolutional Neural Networks
From Physics back to Machine Learning
    Deep Neural Networks and Physics - analogies
    Complexity and effective dimension for neural networks
    Numerical experiments
```

Summary

Outline

What is Machine Learning?

From Machine Learning to Physics
The problem of computing Entropy
Entropy from Machine Learning
2D Ising model entropy/free energy from Monte Carlo @T

Interlude: Deep Convolutional Neural Networks
From Physics back to Machine Learning
Deep Neural Networks and Physics - analogies
Complexity and effective dimension for neural networks
Numerical experiments

Summary

Outline

What is Machine Learning?
From Machine Learning to Physics
The problem of computing Entropy
Entropy from Machine Learning
2D Ising model entropy/free energy from Monte Carlo @T
Interlude: Deep Convolutional Neural Networks
From Physics back to Machine Learning
Deep Neural Networks and Physics - analog ies
Complexity and effective dimension for neural networks
Numerical experiments

Summary

Outline

What is Machine Learning?
From Machine Learning to Physics
The problem of computing Entropy
Entropy from Machine Learning
2D Ising model entropy/free energy from Monte Carlo @T
Interlude: Deep Convolutional Neural Networks
From Physics back to Machine Learning
Deep Neural Networks and Physics - analogies
Complexity and effective dimension for neural networks
Numerical experiments

Summary

Outline

What is Machine Learning?
From Machine Learning to Physics
The problem of computing Entropy
Entropy from Machine Learning
2D Ising model entropy/free energy from Monte Carlo @T
Interlude: Deep Convolutional Neural Networks
From Physics back to Machine Learning
Deep Neural Networks and Physics - analogies
Complexity and effective dimension for neural networks
Numerical experiments
Summary

What is Machine Learning?

- Machine Learning comprises a set of algorithms which e.g.

1. given some set of example data points belonging to various classes,
2. learns based on these examples,
3. so that it can assign new unseen data points to these classes...

- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets.
- MNIST: The Hello World of Machine Learning...
- CIFAR-10 and CIFAR-100

What is Machine Learning?

- Machine Learning comprises a set of algorithms which e.g.

1. given some set of example data points belonging to various classes,
2. learns based on these examples,
3. so that it can assign new unseen data points to these classes..

- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets.
- VNIST: The Hello World of Machine Learning...

What is Machine Learning?

- Machine Learning comprises a set of algorithms which e.g.

1. given some set of example data points belonging to various classes,
2. learns based on these examples,
3. so that it can assign new unseen data points to these classes.

* The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets.
- MNIST: The Hello World of Machine Learning...
- CIFAR-10 and CIFAR-100

What is Machine Learning?

- Machine Learning comprises a set of algorithms which e.g.

1. given some set of example data points belonging to various classes,
2. learns based on these examples,
3. so that it can assign new unseen data points to these classes.

- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets.
- MNIST: The Hello World of Machine Learning...
- CIFAR-10 and CIFAR-100

What is Machine Learning?

- Machine Learning comprises a set of algorithms which e.g.

1. given some set of example data points belonging to various classes,
2. learns based on these examples,
3. so that it can assign new unseen data points to these classes...

- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets.
- MMIIST: The Hello World of Machine Learning...

What is Machine Learning?

- Machine Learning comprises a set of algorithms which e.g.

1. given some set of example data points belonging to various classes,
2. learns based on these examples,
3. so that it can assign new unseen data points to these classes...

- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- MNIST: The Hello World of Machine Learning.
- CIFAR-10 and CIFAR-100

What is Machine Learning?

- Machine Learning comprises a set of algorithms which e.g.

1. given some set of example data points belonging to various classes,
2. learns based on these examples,
3. so that it can assign new unseen data points to these classes...

- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- MNIST: The Hello World of Machine Learning...

$$
8620236997
$$

- CIFAR-10 and CIFAR-100

What is Machine Learning?

- Machine Learning comprises a set of algorithms which e.g.

1. given some set of example data points belonging to various classes,
2. learns based on these examples,
3. so that it can assign new unseen data points to these classes...

- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- MNIST: The Hello World of Machine Learning...

$$
8620236997
$$

- CIFAR-10 and CIFAR-100

What is Machine Learning?

- Machine Learning comprises a set of algorithms which e.g.

1. given some set of example data points belonging to various classes,
2. learns based on these examples,
3. so that it can assign new unseen data points to these classes...

- The renaissance of Machine Learning in recent years came from the success of Deep Neural Networks on image datasets..
- MNIST: The Hello World of Machine Learning...

$$
8620236997
$$

- CIFAR-10 and CIFAR-100

What is Machine Learning?

- ImageNet: state of the art...
1.2 million images ($256 \times 256+$) in 1000 classes

$>$ There is now of course much more to ML (Reinforcement Learning (e.g. AlphaGo), GAN, language models etc.).

What is Machine Learning?

- ImageNet: state of the art...
1.2 million images ($256 \times 256+$) in 1000 classes

- There is now of course much more to ML (Reinforcement Learning (e.g. AlphaGo), GAN, language models etc.)...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0$ (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

$$
p(y=1 \mid \underbrace{x_{11} \ldots x_{i j} \ldots x_{H W}}_{\text {pixels of the image }})
$$

- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0$ (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks

```
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
```

- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0$ (dog)
\rightarrow Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0$ (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

pixels of the image
- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0(\mathrm{dog})$
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

pixels of the image
- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0$ (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

pixels of the image
- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0$ (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

pixels of the image
- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0$ (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

pixels of the image
- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0$ (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

pixels of the image
- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0$ (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

pixels of the image
- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0$ (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

$$
p(y=1 \mid \underbrace{x_{11} \ldots x_{i j} \ldots x_{H W}}_{\text {pixels of the image }})
$$

- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

What is Machine Learning?

- There is a wide variety of Machine Learning classification algorithms:
- Deep Neural Networks
- Random Forests
- Gradient Boosted Trees
- Nearest Neighbours
- Logistic Regression
- Consider now a two class problem:
e.g. images showing cats or dogs, $y=1$ (cat), $y=0$ (dog)
- Typically these ML classification algorithms do not provide only the class y of a new data point (e.g. image) but rather give the probability that the class is $y=1$
- This is really the conditional probability

$$
p(y=1 \mid \underbrace{x_{11} \ldots x_{i j} \ldots x_{H W}}_{\text {pixels of the image }})
$$

- Machine Learning classification algorithms are designed to model (and learn from data!) very complex conditional probability distributions...

Why computing entropy is interesting?

Why computing entropy is interesting?

Monte-Carlo configurations

What is the free energy/entropy?
Complexity for Neural Networks

Nontrivial in high dimension!
\longrightarrow New method

Use entropy to define this!

Shannon entropy

Suppose that we have an N-dimensional binary signal $\left\{x_{i}\right\}_{i=1 . . N}$ coming from a probability distribution $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
The Shannon entropy is defined by

Key difficulty: Estimate $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ from a set of n samples...

- Count the number of occurrencies k of a configuration $\left\{x_{i}\right\}_{i=1 . . \mathrm{N}}$
- Estimate the probability of this configuration as

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{k}{n}
$$

- There are various refinements taking into account finite n effects: Miller-Madow, Chao-Shen, Grassberger, James-Stein, Nemenman-Shafee-Bialek (NSB)

Shannon entropy

Suppose that we have an N-dimensional binary signal $\left\{x_{i}\right\}_{i=1 . . N}$ coming from a probability distribution $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
The Shannon entropy is defined by

Key difficulty: Estimate $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ from a set of n samples...

- Count the number of occurrencies k of a configuration $\left\{x_{i}\right\}_{i=1 . . N}$
- Estimate the probability of this configuration as

- There are various refinements taking into account finite n effects: Miller-Madow, Chao-Shen, Grassberger, James-Stein, Nemenman-Shafee-Bialek (NSB)

Shannon entropy

Suppose that we have an N-dimensional binary signal $\left\{x_{i}\right\}_{i=1 . . N}$ coming from a probability distribution $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
The Shannon entropy is defined by

$$
S=-\sum_{\left\{x_{i}\right\}_{i=1 . . N}} p\left(x_{1}, x_{2}, \ldots, x_{N}\right) \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

Key difficulty: Estimate $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ from a set of n samples...
= Count the number of occurrencies k of a configuration $\left\{x_{i}\right\}$

- Estimate the probability of this configuration as

- There are various refinements taking into account finite n effects: Miller-Madow, Chao-Shen, Grassberger, James-Stein, Nemenman-Shafee-Bialek (NSB)

Shannon entropy

Suppose that we have an N-dimensional binary signal $\left\{x_{i}\right\}_{i=1 . . N}$ coming from a probability distribution $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
The Shannon entropy is defined by

$$
S=-\sum_{\left\{x_{i}\right\}_{i=1 . . N}} p\left(x_{1}, x_{2}, \ldots, x_{N}\right) \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

Key difficulty: Estimate $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ from a set of n samples...
= Count the number of occurrencies k of a configuration $\left\{x_{i}\right\}$

- Estimate the probability of this configuration as

- There are various refinements taking into account finite n effects: Miller-Madow, Chao-Shen, Grassberger, James-Stein, Nemenman-Shafee-Bialek (NSB)

Shannon entropy

Suppose that we have an N-dimensional binary signal $\left\{x_{i}\right\}_{i=1 . . N}$ coming from a probability distribution $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
The Shannon entropy is defined by

$$
S=-\left\langle\log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right\rangle \quad \equiv-\frac{1}{n} \sum_{k=1}^{n} \log _{2} p\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{N}^{(k)}\right)
$$

Key difficulty: Estimate $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ from a set of n samples...

- Count the number of occurrencies k of a configuration $\left\{x_{i}\right\}_{i=1 . N}$
- Estimate the probability of this configuration as

- There are various refinements taking into account finite n effects: Miller-Madow, Chao-Shen, Grassberger, James-Stein, Nemenman-Shafee-Bialek (NSB)

Shannon entropy

Suppose that we have an N-dimensional binary signal $\left\{x_{i}\right\}_{i=1 . . N}$ coming from a probability distribution $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
The Shannon entropy is defined by

$$
S=-\left\langle\log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right\rangle \quad \equiv-\frac{1}{n} \sum_{k=1}^{n} \log _{2} p\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{N}^{(k)}\right)
$$

Key difficulty: Estimate $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ from a set of n samples...

- Count the number of occurrencies k of a configuration $\left\{x_{i}\right\}_{i=1 . . N}$
- Estimate the probability of this configuration as

- There are various refinements taking into account finite n effects: Miller-Madow, Chao-Shen, Grassberger, James-Stein, Nemenman-Shafee-Bialek (NSB)

Shannon entropy

Suppose that we have an N-dimensional binary signal $\left\{x_{i}\right\}_{i=1 . . N}$ coming from a probability distribution $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
The Shannon entropy is defined by

$$
S=-\left\langle\log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right\rangle \quad \equiv-\frac{1}{n} \sum_{k=1}^{n} \log _{2} p\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{N}^{(k)}\right)
$$

Key difficulty: Estimate $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ from a set of n samples...

- Count the number of occurrencies k of a configuration $\left\{x_{i}\right\}_{i=1 . . N}$
- Estimate the probability of this configuration as

- There are various refinements taking into account finite n effects: Miller-Madow, Chao-Shen, Grassberger, James-Stein, Nemenman-Shafee-Bialek (NSB)

Shannon entropy

Suppose that we have an N-dimensional binary signal $\left\{x_{i}\right\}_{i=1 . . N}$ coming from a probability distribution $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
The Shannon entropy is defined by

$$
S=-\left\langle\log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right\rangle \quad \equiv-\frac{1}{n} \sum_{k=1}^{n} \log _{2} p\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{N}^{(k)}\right)
$$

Key difficulty: Estimate $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ from a set of n samples...

- Count the number of occurrencies k of a configuration $\left\{x_{i}\right\}_{i=1 . . N}$
- Estimate the probability of this configuration as

- There are various refinements taking into account finite n effects: Miller-Madow, Chao-Shen, Grassberger, James-Stein, Nemenman-Shafee-Bialek (NSB)

Shannon entropy

Suppose that we have an N-dimensional binary signal $\left\{x_{i}\right\}_{i=1 . . N}$ coming from a probability distribution $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
The Shannon entropy is defined by

$$
S=-\left\langle\log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right\rangle \quad \equiv-\frac{1}{n} \sum_{k=1}^{n} \log _{2} p\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{N}^{(k)}\right)
$$

Key difficulty: Estimate $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ from a set of n samples...

- Count the number of occurrencies k of a configuration $\left\{x_{i}\right\}_{i=1 . . N}$
- Estimate the probability of this configuration as

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{k}{n}
$$

- There are various refinements taking into account finite n effects: Miller-Madow, Chao-Shen, Grassberger, James-Stein, Nemenman-Shafee-Bialek (NSB)

Shannon entropy

Suppose that we have an N-dimensional binary signal $\left\{x_{i}\right\}_{i=1 . . N}$ coming from a probability distribution $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.
The Shannon entropy is defined by

$$
S=-\left\langle\log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right\rangle \quad \equiv-\frac{1}{n} \sum_{k=1}^{n} \log _{2} p\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{N}^{(k)}\right)
$$

Key difficulty: Estimate $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ from a set of n samples...

- Count the number of occurrencies k of a configuration $\left\{x_{i}\right\}_{i=1 . . N}$
- Estimate the probability of this configuration as

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{k}{n}
$$

- There are various refinements taking into account finite n effects: Miller-Madow, Chao-Shen, Grassberger, James-Stein, Nemenman-Shafee-Bialek (NSB)

Problems:

- As we increase the dimensionality N, the number of possible configurations grows as $2^{N} \ldots$
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- This is the generic situation in Physics simulations e.g. a $20 \times 202 \mathrm{D}$ Ising model has $2^{400} \sim 10^{120}$ configurations
- All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at $T \geq 2.7$

We cannot use the above ways of evaluating entropy based on occurrence counts...

Problems:

- As we increase the dimensionality N, the number of possible configurations grows as 2^{N}...
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- This is the generic situation in Physics simulations e.g. a $20 \times 202 \mathrm{D}$ Ising model has $2^{400} \sim 10^{120}$ configurations
- All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at $T \geq 2.7$

We cannot use the above ways of evaluating entropy based on occurrence counts...

Problems:

- As we increase the dimensionality N, the number of possible configurations grows as 2^{N}...
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- This is the generic situation in Physics simulations e.g. a $20 \times 202 \mathrm{D}$ Ising model has $2^{400} \sim 10^{120}$ configurations
- All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at $T \geq 2.7$

We cannot use the above ways of evaluating entropy based on occurrence counts...

Problems:

- As we increase the dimensionality N, the number of possible configurations grows as 2^{N}...
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- This is the generic situation in Physics simulations e.g. a 20×202 D Ising model has $2^{400} \sim 10^{120}$ configurations
- All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at $T \geq 2.7$

We cannot use the above ways of evaluating entropy based on occurrence counts...

Problems:

- As we increase the dimensionality N, the number of possible configurations grows as 2^{N}...
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- This is the generic situation in Physics simulations e.g. a 20×202 I Ising model has $2^{400} \sim 10^{120}$ configurations
- All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at $T \geq 2.7$

We cannot use the above ways of evaluating entropy based on occurrence counts...

Problems:

- As we increase the dimensionality N, the number of possible configurations grows as $2^{N} \ldots$
- Then it is quite probable that each configuration occurs at most once in the given data sample...
- This is the generic situation in Physics simulations e.g. a $20 \times 202 \mathrm{D}$ Ising model has $2^{400} \sim 10^{120}$ configurations
- All configurations are indeed distinct within the 20000 MC configurations of the above Ising model at $T \geq 2.7$

We cannot use the above ways of evaluating entropy based on occurrence counts...

Entropy in Physics

- In Physics we have the additional structure of a Boltzmann distribution:

$$
p_{\text {Boltzmann }}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{1}{Z} e^{-\frac{1}{T} E\left(x_{1}, x_{2}, \ldots, x_{N}\right)}
$$

- $E\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is typically easy to evaluate...
- \ldots but in $\log p\left(x_{1}, x_{2}, \ldots, x_{N_{\prime}}\right)$ we have $\log Z$ which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

$$
F=-T \log Z=\langle E\rangle-T S
$$

Entropy in Physics

- In Physics we have the additional structure of a Boltzmann distribution:

$$
p_{\text {Boltzmann }}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{1}{Z} e^{-\frac{1}{T} E\left(x_{1}, x_{2}, \ldots, x_{N}\right)}
$$

- $E\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is typically easy to evaluate...
- ... but in $\log p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ we have $\log Z$ which involves a summation over all configurations..
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

$$
F=-T \log Z=\langle E\rangle-T S
$$

Entropy in Physics

- In Physics we have the additional structure of a Boltzmann distribution:

$$
p_{\text {Boltzmann }}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{1}{Z} e^{-\frac{1}{T} E\left(x_{1}, x_{2}, \ldots, x_{N}\right)}
$$

- $E\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is typically easy to evaluate...
- ... but in $\log p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ we have $\log Z$ which involves a summation over all configurations..
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

$$
F=-T \log Z=\langle E\rangle-T S
$$

Entropy in Physics

- In Physics we have the additional structure of a Boltzmann distribution:

$$
p_{\text {Boltzmann }}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{1}{Z} e^{-\frac{1}{T} E\left(x_{1}, x_{2}, \ldots, x_{N}\right)}
$$

- $E\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is typically easy to evaluate...
- ... but in $\log p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ we have $\log Z$ which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

$$
F=-T \log Z-|E\rangle-T S
$$

Entropy in Physics

- In Physics we have the additional structure of a Boltzmann distribution:

$$
p_{\text {Boltzmann }}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{1}{Z} e^{-\frac{1}{T} E\left(x_{1}, x_{2}, \ldots, x_{N}\right)}
$$

- $E\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is typically easy to evaluate...
- ... but in $\log p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ we have $\log Z$ which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

$$
F=-T \log Z=\langle E\rangle-T S
$$

Entropy in Physics

- In Physics we have the additional structure of a Boltzmann distribution:

$$
p_{\text {Boltzmann }}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{1}{Z} e^{-\frac{1}{T} E\left(x_{1}, x_{2}, \ldots, x_{N}\right)}
$$

- $E\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is typically easy to evaluate...
- ... but in $\log p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ we have $\log Z$ which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

$$
F=-T \log Z=\langle E\rangle-T S
$$

Entropy in Physics

- In Physics we have the additional structure of a Boltzmann distribution:

$$
p_{\text {Boltzmann }}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{1}{Z} e^{-\frac{1}{T} E\left(x_{1}, x_{2}, \ldots, x_{N}\right)}
$$

- $E\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is typically easy to evaluate...
- ... but in $\log p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ we have $\log Z$ which involves a summation over all configurations...
- very difficult (if not impossible) to evaluate
- Indeed entropy is equivalent to the free energy through

$$
F=-T \log Z=\langle E\rangle-T S
$$

Temperature integration

- Evaluate the heat capacity $C(T)$ from the variance of the energy $\sigma_{E}^{2}(T)$

$$
C(T)=\frac{\partial\langle E\rangle}{\partial T}=\frac{\sigma_{E}^{2}(T)}{T^{2}}
$$

- Obtain the entropy by a numerical integration over T :

$$
S\left(T_{0}\right)=\int_{0}^{T_{0}} C(T) \frac{d T}{T}
$$

- Need to perform separate Monte Carlo simulations for the whole range of temperatures from $T=0$ to $T=T_{0}$

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states...

Temperature integration

- Evaluate the heat capacity $C(T)$ from the variance of the energy $\sigma_{E}^{2}(T)$

$$
C(T)=\frac{\partial\langle E\rangle}{\partial T}=\frac{\sigma_{E}^{2}(T)}{T^{2}}
$$

- Obtain the entropy by a numerical integration over T :

$$
S\left(T_{0}\right)=\int_{0}^{T_{0}} C(T) \frac{d T}{T}
$$

- Need to perform separate Monte Carlo simulations for the whole range of temperatures from $T=0$ to $T=T_{0}$

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states.

Temperature integration

- Evaluate the heat capacity $C(T)$ from the variance of the energy $\sigma_{E}^{2}(T)$

$$
C(T)=\frac{\partial\langle E\rangle}{\partial T}=\frac{\sigma_{E}^{2}(T)}{T^{2}}
$$

- Obtain the entropy by a numerical integration over T :

- Need to perform separate Monte Carlo simulations for the whole range of temperatures from $T=0$ to $T=T_{0}$

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states.

Temperature integration

- Evaluate the heat capacity $C(T)$ from the variance of the energy $\sigma_{E}^{2}(T)$

$$
C(T)=\frac{\partial\langle E\rangle}{\partial T}=\frac{\sigma_{E}^{2}(T)}{T^{2}}
$$

- Obtain the entropy by a numerical integration over T :

$$
S\left(T_{0}\right)=\int_{0}^{T_{0}} C(T) \frac{d T}{T}
$$

- Need to perform separate Monte Carlo simulations for the whole range of temperatures from $T=0$ to $T=T_{0}$

Wang-Landau sampling
> Does not use the original Monte Carlo configurations at all..

- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states.

Temperature integration

- Evaluate the heat capacity $C(T)$ from the variance of the energy $\sigma_{E}^{2}(T)$

$$
C(T)=\frac{\partial\langle E\rangle}{\partial T}=\frac{\sigma_{E}^{2}(T)}{T^{2}}
$$

- Obtain the entropy by a numerical integration over T :

$$
S\left(T_{0}\right)=\int_{0}^{T_{0}} C(T) \frac{d T}{T}
$$

- Need to perform separate Monte Carlo simulations for the whole range of temperatures from $T=0$ to $T=T_{0}$

Wang-Landau sampling

* Does not use the original Monte Carlo configurations at all.
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states.

Temperature integration

- Evaluate the heat capacity $C(T)$ from the variance of the energy $\sigma_{E}^{2}(T)$

$$
C(T)=\frac{\partial\langle E\rangle}{\partial T}=\frac{\sigma_{E}^{2}(T)}{T^{2}}
$$

- Obtain the entropy by a numerical integration over T :

$$
S\left(T_{0}\right)=\int_{0}^{T_{0}} C(T) \frac{d T}{T}
$$

- Need to perform separate Monte Carlo simulations for the whole range of temperatures from $T=0$ to $T=T_{0}$

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states.

Temperature integration

- Evaluate the heat capacity $C(T)$ from the variance of the energy $\sigma_{E}^{2}(T)$

$$
C(T)=\frac{\partial\langle E\rangle}{\partial T}=\frac{\sigma_{E}^{2}(T)}{T^{2}}
$$

- Obtain the entropy by a numerical integration over T :

$$
S\left(T_{0}\right)=\int_{0}^{T_{0}} C(T) \frac{d T}{T}
$$

- Need to perform separate Monte Carlo simulations for the whole range of temperatures from $T=0$ to $T=T_{0}$

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states..

Temperature integration

- Evaluate the heat capacity $C(T)$ from the variance of the energy $\sigma_{E}^{2}(T)$

$$
C(T)=\frac{\partial\langle E\rangle}{\partial T}=\frac{\sigma_{E}^{2}(T)}{T^{2}}
$$

- Obtain the entropy by a numerical integration over T :

$$
S\left(T_{0}\right)=\int_{0}^{T_{0}} C(T) \frac{d T}{T}
$$

- Need to perform separate Monte Carlo simulations for the whole range of temperatures from $T=0$ to $T=T_{0}$

Wang-Landau sampling

- Does not use the original Monte Carlo configurations at all..
- Need to perform conceptually different Monte Carlo sampling to evaluate the density of states...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature.

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

Goal:

1. Find a method for computing entropy from binary configurations which would work in the regime when each configuration appears at most only once
2. Use it to compute the entropy and free energy directly from Monte Carlo configurations at a given temperature...

\longrightarrow Entropy

Idea:

The formula using occurrence counts

$$
S=-\sum_{\left\{x_{1}\right\}=1, N} p\left(x_{1}, x_{2}, \ldots, x_{N}\right) \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

with

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{k}{n}
$$

treats each configuration as a structureless "atomic" object.

This approach: Analyze instead the internal structure of the configurations...

Idea:

The formula using occurrence counts

$$
S=-\sum_{\{x,\}=1, N} p\left(x_{1}, x_{2}, \ldots, x_{N}\right) \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

with

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{k}{n}
$$

treats each configuration as a structureless "atomic" object.

This approach: Analyze instead the internal structure of the configurations...

Idea:
The formula using occurrence counts

$$
S=-\sum_{\left\{x_{i}\right\}_{i=1 . . N}} p\left(x_{1}, x_{2}, \ldots, x_{N}\right) \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

with

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{k}{n}
$$

treats each configuration as a structureless "atomic" object.

This approach: Analyze instead the internal structure of the configurations..

Idea:
The formula using occurrence counts

$$
S=-\sum_{\left\{x_{i}\right\}_{i=1 . . N}} p\left(x_{1}, x_{2}, \ldots, x_{N}\right) \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

with

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{k}{n}
$$

treats each configuration as a structureless "atomic" object.

This approach: Analyze instead the internal structure of the configurations.

Idea:
The formula using occurrence counts

$$
S=-\sum_{\left\{x_{i}\right\}_{i=1 . . N}} p\left(x_{1}, x_{2}, \ldots, x_{N}\right) \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

with

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{k}{n}
$$

treats each configuration as a structureless "atomic" object.
This approach: Analyze instead the internal structure of the configurations...
use Machine Learning methods...

Idea:

The formula using occurrence counts

$$
S=-\sum_{\left\{x_{i}\right\}_{i=1 . . N}} p\left(x_{1}, x_{2}, \ldots, x_{N}\right) \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

with

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\frac{k}{n}
$$

treats each configuration as a structureless "atomic" object.

This approach: Analyze instead the internal structure of the configurations...
use Machine Learning methods...

Entropy from Machine Learning

- Start from the exact rewriting

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)
$$

- Shannon's entropy $\left\langle-\log _{2} p\right\rangle$ decomposes into a sum of N terms

$$
S=S_{1}+\Delta S_{2}+\Delta S_{3}+\ldots \Delta S_{N}
$$

- The first term is just the entropy of the first neuron/spin

$$
S_{1}=-\left\langle\log _{2} p\left(x_{1}\right)\right\rangle \equiv-p_{1} \log _{2} p_{1}-\left(1-p_{1}\right) \log _{2}\left(1-p_{1}\right)
$$

where $p_{1} \equiv p\left(x_{1}=1\right)$.

- The second term is more interesting.

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

Entropy from Machine Learning

- Start from the exact rewriting

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdot \ldots
$$

- Shannon's entropy $\left\langle-\log _{2} p\right\rangle$ decomposes into a sum of N terms

- The first term is just the entropy of the first neuron/spin

$$
S_{1}=-\left\langle\log _{2} p\left(x_{1}\right)\right\rangle \equiv-p_{1} \log _{2} p_{1}-\left(1-p_{1}\right) \log _{2}\left(1-p_{1}\right)
$$

where $p_{1} \equiv p\left(x_{1}=1\right)$.

- The second term is more interesting...

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

Entropy from Machine Learning

- Start from the exact rewriting

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdot \ldots
$$

- Shannon's entropy $\left\langle-\log _{2} p\right\rangle$ decomposes into a sum of N terms

- The first term is just the entropy of the first neuron/spin $S_{1}=-\left\langle\log _{2} p\left(x_{1}\right)\right\rangle \equiv-p_{1} \log _{2} p_{1}-\left(1-p_{1}\right) \log _{2}\left(1-p_{1}\right)$
where $p_{1} \equiv p\left(x_{1}=1\right)$.
- The second term is more interesting...

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

Entropy from Machine Learning

- Start from the exact rewriting

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdot \ldots
$$

- Shannon's entropy $\left\langle-\log _{2} p\right\rangle$ decomposes into a sum of N terms

$$
S=S_{1}+\Delta S_{2}+\Delta S_{3}+\ldots \Delta S_{N}
$$

- The first term is just the entropy of the first neuron/spin $S_{1}=-\left\langle\log _{2} p\left(x_{1}\right)\right\rangle=-p_{1} \log _{2} p_{1}-\left(1-p_{1}\right) \log _{2}\left(1-p_{1}\right)$
where $p_{1} \equiv p\left(x_{1}=1\right)$.
- The second term is more interesting.

Entropy from Machine Learning

- Start from the exact rewriting

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdot \ldots
$$

- Shannon's entropy $\left\langle-\log _{2} p\right\rangle$ decomposes into a sum of N terms

$$
S=S_{1}+\Delta S_{2}+\Delta S_{3}+\ldots \Delta S_{N}
$$

- The first term is just the entropy of the first neuron/spin

$$
S_{1}=-\left\langle\log _{2} p\left(x_{1}\right)\right\rangle \equiv-p_{1} \log _{2} p_{1}-\left(1-p_{1}\right) \log _{2}\left(1-p_{1}\right)
$$

where $p_{1} \equiv p\left(x_{1}=1\right)$.

- The second term is more interesting.
$\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle$

Entropy from Machine Learning

- Start from the exact rewriting

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdot \ldots
$$

- Shannon's entropy $\left\langle-\log _{2} p\right\rangle$ decomposes into a sum of N terms

$$
S=S_{1}+\Delta S_{2}+\Delta S_{3}+\ldots \Delta S_{N}
$$

- The first term is just the entropy of the first neuron/spin

$$
S_{1}=-\left\langle\log _{2} p\left(x_{1}\right)\right\rangle \equiv-p_{1} \log _{2} p_{1}-\left(1-p_{1}\right) \log _{2}\left(1-p_{1}\right)
$$

where $p_{1} \equiv p\left(x_{1}=1\right)$.

- The second term is more interesting...

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

Entropy from Machine Learning

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

- $p\left(x_{2} \mid x_{1}\right)$ (and $p\left(x_{3} \mid x_{1}, x_{2}\right)$ etc.) is exactly a conditional probability distribution of the kind which is well computed by machine learning classifiers!
- It corresponds to predicting the spin x_{2} based on the value of the spin x_{1} interpreted as classification problems
- Moreover

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

is the cross-entropy loss of that machine learning classification problem

- similarly for $p\left(x_{3} \mid x_{1}, x_{2}\right)$ we predict the class (spin) x_{3} based on the data x_{1}, x_{2}

Entropy from Machine Learning

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

- $p\left(x_{2} \mid x_{1}\right)$ (and $p\left(x_{3} \mid x_{1}, x_{2}\right)$ etc.) is exactly a conditional probability distribution of the kind which is well computed by machine learning classifiers!
- It corresponds to predicting the spin x_{2} based on the value of the spin x_{1} interpreted as classification problems
- Moreover
$\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle$
is the cross-entropy loss of that machine learning classification problem
- similarly for $p\left(x_{3} \mid x_{1}, x_{2}\right)$ we predict the class (spin) x_{3} based on the data x_{1}, x_{2}

Entropy from Machine Learning

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

- $p\left(x_{2} \mid x_{1}\right)$ (and $p\left(x_{3} \mid x_{1}, x_{2}\right)$ etc.) is exactly a conditional probability distribution of the kind which is well computed by machine learning classifiers!
- It corresponds to predicting the spin x_{2} based on the value of the spin x_{1} interpreted as classification problems
- Moreover $\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle$
is the cross-entropy loss of that machine learning classification problem
- similarly for $p\left(x_{3} \mid x_{1}, x_{2}\right)$ we predict the class (spin) x_{3} based on the data x_{1}, x_{2}

Entropy from Machine Learning

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

- $p\left(x_{2} \mid x_{1}\right)$ (and $p\left(x_{3} \mid x_{1}, x_{2}\right)$ etc.) is exactly a conditional probability distribution of the kind which is well computed by machine learning classifiers!
- It corresponds to predicting the spin x_{2} based on the value of the spin x_{1} interpreted as classification problems
- Moreover

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

is the cross-entropy loss of that machine learning classification problem

- similarly for $p\left(x_{3} \mid x_{1}, x_{2}\right)$ we predict the class (spin) x_{3} based on the data x_{1}, x_{2}

Entropy from Machine Learning

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

- $p\left(x_{2} \mid x_{1}\right)$ (and $p\left(x_{3} \mid x_{1}, x_{2}\right)$ etc.) is exactly a conditional probability distribution of the kind which is well computed by machine learning classifiers!
- It corresponds to predicting the spin x_{2} based on the value of the spin x_{1} interpreted as classification problems
- Moreover

$$
\Delta S_{2}=-\left\langle\log _{2} p\left(x_{2} \mid x_{1}\right)\right\rangle
$$

is the cross-entropy loss of that machine learning classification problem

- similarly for $p\left(x_{3} \mid x_{1}, x_{2}\right)$ we predict the class (spin) x_{3} based on the data x_{1}, x_{2}

Entropy from Machine Learning

The resulting prescription

- An estimate of the entropy is given by

$$
S=S_{1}+\Delta S_{2}+\Delta S_{3}+\ldots \Delta S_{N}
$$

- This is a sum of cross-entropy losses of a sequence of supervised classification problems where we predict the probability of $x_{j}=1$ given the values of the previous spins $x_{1}, x_{2}, \ldots, x_{j-1}$.
- One can use any machine learning classification algorithm to compute the entropy

Entropy from Machine Learning

The resulting prescription

- An estimate of the entropy is given by

$$
S=S_{1}+\Delta S_{2}+\Delta S_{3}+\ldots \Delta S_{N}
$$

- This is a sum of cross-entropy losses of a sequence of supervised classification problems where we predict the probability of $x_{j}=1$ given the values of the previous spins $x_{1}, x_{2}, \ldots, x_{j-1}$.
- One can use any machine learning classification algorithm to compute the entropy

Entropy from Machine Learning

The resulting prescription

- An estimate of the entropy is given by

$$
S=S_{1}+\Delta S_{2}+\Delta S_{3}+\ldots \Delta S_{N}
$$

- This is a sum of cross-entropy losses of a sequence of supervised classification problems where we predict the probability of $x_{j}=1$ given the values of the previous spins $x_{1}, x_{2}, \ldots, x_{j-1}$
- One can use any machine learning classification algorithm to compute the entropy

Entropy from Machine Learning

The resulting prescription

- An estimate of the entropy is given by

$$
S=S_{1}+\Delta S_{2}+\Delta S_{3}+\ldots \Delta S_{N}
$$

- This is a sum of cross-entropy losses of a sequence of supervised classification problems where we predict the probability of $x_{j}=1$ given the values of the previous spins $x_{1}, x_{2}, \ldots, x_{j-1}$.
- One can use any machine learning classification algorithm to compute the entropy

Entropy from Machine Learning

The resulting prescription

- An estimate of the entropy is given by

$$
S=S_{1}+\Delta S_{2}+\Delta S_{3}+\ldots \Delta S_{N}
$$

- This is a sum of cross-entropy losses of a sequence of supervised classification problems where we predict the probability of $x_{j}=1$ given the values of the previous spins $x_{1}, x_{2}, \ldots, x_{j-1}$.
- One can use any machine learning classification algorithm to compute the entropy

Variational interpretation

- Given enough data, it is easy to see that the true entropy is bounded from above by the Machine Learning estimate

$$
S_{\text {true }}=-\left\langle\log _{2} p_{\text {true }}\right\rangle_{\text {true }} \leq-\langle\log _{2} \underbrace{p_{M L}}_{p_{\text {trial }}}\rangle_{\text {true }}
$$

- One can therefore consider this as a variational bound for entropy..
- ... but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (logistic regression) and nonlinear ML classifiers gives novel kind of information on the complexity of data...

Variational interpretation

- Given enough data, it is easy to see that the true entropy is bounded from above by the Machine Learning estimate

$$
S_{\text {true }}=-\left\langle\log _{2} p_{\text {true }}\right\rangle_{\text {true }} \leq-\langle\log _{2} \underbrace{p_{M L}}_{p_{\text {trial }}}\rangle_{\text {true }}
$$

- One can therefore consider this as a variational bound for entropy..
- ... but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (logistic regression) and nonlinear ML classifiers gives novel kind of information on the complexity of data...

Variational interpretation

- Given enough data, it is easy to see that the true entropy is bounded from above by the Machine Learning estimate

$$
S_{\text {true }}=-\left\langle\log _{2} p_{\text {true }}\right\rangle_{\text {true }} \leq-\langle\log _{2} \underbrace{p_{M L}}_{p_{\text {trial }}}\rangle_{\text {true }}
$$

- One can therefore consider this as a variational bound for entropy...
- ... but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (logistic regression) and nonlinear ML classifiers gives novel kind of information on the complexity of data...

Variational interpretation

- Given enough data, it is easy to see that the true entropy is bounded from above by the Machine Learning estimate

$$
S_{\text {true }}=-\left\langle\log _{2} p_{\text {true }}\right\rangle_{\text {true }} \leq-\langle\log _{2} \underbrace{p_{M L}}_{p_{\text {trial }}}\rangle_{\text {true }}
$$

- One can therefore consider this as a variational bound for entropy...
- ... but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (logistic regression) and nonlinear ML classifiers gives novel kind of information on the complexity of data.

Variational interpretation

- Given enough data, it is easy to see that the true entropy is bounded from above by the Machine Learning estimate

$$
S_{\text {true }}=-\left\langle\log _{2} p_{\text {true }}\right\rangle_{\text {true }} \leq-\langle\log _{2} \underbrace{p_{M L}}_{p_{\text {trial }}}\rangle_{\text {true }}
$$

- One can therefore consider this as a variational bound for entropy...
- ... but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (logistic regression) and nonlinear ML classifiers gives novel kind of information on the complexity of data.

Variational interpretation

- Given enough data, it is easy to see that the true entropy is bounded from above by the Machine Learning estimate

$$
S_{\text {true }}=-\left\langle\log _{2} p_{\text {true }}\right\rangle_{\text {true }} \leq-\langle\log _{2} \underbrace{p_{M L}}_{p_{\text {trrial }}}\rangle_{\text {true }}
$$

- One can therefore consider this as a variational bound for entropy...
- ... but with very nontrivial trial functions coming from Machine Learning classifiers...
- One can try various ML classifiers and pick the best...
- Comparison of estimates from linear (logistic regression) and nonlinear ML classifiers gives novel kind of information on the complexity of data...

Further remarks

- The specific classification problems depend on the ordering of the spins $x_{1}, x_{2}, \ldots, x_{N}$
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use k-fold cross-validation
- \ldots and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem

Further remarks

- The specific classification problems depend on the ordering of the spins $x_{1}, x_{2}, \ldots, x_{N}$
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use k-fold cross-validation
- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem

Further remarks

- The specific classification problems depend on the ordering of the spins $x_{1}, x_{2}, \ldots, x_{N}$
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular
machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use k-fold cross-validation
- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem

Further remarks

- The specific classification problems depend on the ordering of the spins $x_{1}, x_{2}, \ldots, x_{N}$
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use k-fold cross-validation
- The specific classification problems depend on the ordering of the spins $x_{1}, x_{2}, \ldots, x_{N}$
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use k-fold cross-validation
- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem
- The specific classification problems depend on the ordering of the spins $x_{1}, x_{2}, \ldots, x_{N}$
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use k-fold cross-validation

Further remarks

- The specific classification problems depend on the ordering of the spins $x_{1}, x_{2}, \ldots, x_{N}$
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use k-fold cross-validation

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5

- ... and use only the predictions on the test folds.
- refinement: shuffle the data differently for each classification problem

Further remarks

- The specific classification problems depend on the ordering of the spins $x_{1}, x_{2}, \ldots, x_{N}$
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use k-fold cross-validation

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5

- ... and use only the predictions on the test folds...
- The specific classification problems depend on the ordering of the spins $x_{1}, x_{2}, \ldots, x_{N}$
- However, the final answer (sum of the cross-entropies) should be independent of the ordering
- This is a nontrivial cross-check of the applicability of a particular machine learning classification algorithm
- One should never evaluate ML models (to get probabilities) on the data which were used for training
- A standard way to sidestep this issue is to use k-fold cross-validation

| Split 1 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Split 2 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
| Split 3 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
| Split 4 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
| Split 5 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |

- ... and use only the predictions on the test folds...
- refinement: shuffle the data differently for each classification problem

Example

2D Ising model:
Evaluate the entropy and free energy from Monte Carlo configurations of the 2D Ising model

- Has two phases and a critical point in between...
- There is a generalization of the Onsager solution to an exact solution on a periodic $L \times L$ lattice due to Kaufman
- At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20×20 lattice
- We consider a range of temperatures $T=1.0$ to $T=4.0$ ($T_{c} \sim 2.269 \ldots$) covering both phases
- There are $\sim 10^{120}$ possible configurations, for $T \geq 2.7$ the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

Example

2D Ising model:
Evaluate the entropy and free energy from Monte Carlo configurations of the 2D Ising model

- Has two phases and a critical point in between...
- There is a generalization of the Onsager solution to an exact solution on a periodic $L \times L$ lattice due to Kaufman
- At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20×20 lattice
- We consider a range of temperatures $T=1.0$ to $T=4.0$ ($T_{c} \sim 2.269 \ldots$) covering both phases
- There are $\sim 10^{120}$ possible configurations, for $T \geq 2.7$ the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

Example

2D Ising model:
Evaluate the entropy and free energy from Monte Carlo configurations of the 2D Ising model

- Has two phases and a critical point in between...
- There is a generalization of the Onsager solution to an exact solution on a periodic $L \times L$ lattice due to Kaufman
- At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20×20 lattice
- We consider a range of temperatures $T=1.0$ to $T=4.0$ ($T_{c} \sim 2.269 \ldots$...) covering both phases
- There are $\sim 10^{120}$ possible configurations, for $T \geq 2.7$ the Monte Carlo samples involve only distinct configurations..
- We choose a random ordering of the lattice sites for the classification problems

Example

2D Ising model:
Evaluate the entropy and free energy from Monte Carlo configurations of the 2D Ising model

- Has two phases and a critical point in between...
- There is a generalization of the Onsager solution to an exact solution on a periodic $L \times L$ lattice due to Kaufman
- At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20×20 lattice
- We consider a range of temperatures $T=1.0$ to $T=4.0$ ($\left.T_{c} \sim 2.269 \ldots\right)$ covering both phases
- There are $\sim 10^{120}$ possible configurations, for $T \geq 2.7$ the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

Example

2D Ising model:

Evaluate the entropy and free energy from Monte Carlo configurations of the 2D Ising model

- Has two phases and a critical point in between...
- There is a generalization of the Onsager solution to an exact solution on a periodic $L \times L$ lattice due to Kaufman
- At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20×20 lattice
- We consider a range of temperatures $T=1.0$ to $T=4.0$ ($T_{c} \sim 2.269 \ldots$...) covering both phases
- There are $\sim 10^{120}$ possible configurations, for $T \geq 2.7$ the Monte Carlo samples involve only distinct configurations..
- We choose a random ordering of the lattice sites for the classification problems

Example

2D Ising model:

Evaluate the entropy and free energy from Monte Carlo configurations of the 2D Ising model

- Has two phases and a critical point in between...
- There is a generalization of the Onsager solution to an exact solution on a periodic $L \times L$ lattice due to Kaufman
- At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20×20 lattice
- We consider a range of temperatures $T=1.0$ to $T=4.0$ ($T_{c} \sim 2.269 \ldots$...) covering both phases
- There are $\sim 10^{120}$ possible configurations, for $T \geq 2.7$ the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

Example

2D Ising model:

Evaluate the entropy and free energy from Monte Carlo configurations of the 2D Ising model

- Has two phases and a critical point in between...
- There is a generalization of the Onsager solution to an exact solution on a periodic $L \times L$ lattice due to Kaufman
- At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20×20 lattice
- We consider a range of temperatures $T=1.0$ to $T=4.0$ ($T_{c} \sim 2.269 \ldots$...) covering both phases
- There are $\sim 10^{120}$ possible configurations, for $T \geq 2.7$ the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

Example

2D Ising model:

Evaluate the entropy and free energy from Monte Carlo configurations of the 2D Ising model

- Has two phases and a critical point in between...
- There is a generalization of the Onsager solution to an exact solution on a periodic $L \times L$ lattice due to Kaufman
- At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20×20 lattice
- We consider a range of temperatures $T=1.0$ to $T=4.0$ ($T_{c} \sim 2.269 \ldots$...) covering both phases
- There are $\sim 10^{120}$ possible configurations, for $T \geq 2.7$ the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

Example

2D Ising model:

Evaluate the entropy and free energy from Monte Carlo configurations of the 2D Ising model

- Has two phases and a critical point in between...
- There is a generalization of the Onsager solution to an exact solution on a periodic $L \times L$ lattice due to Kaufman
- At a given temperature, we generate 20000 configurations of the 2D Ising model on a 20×20 lattice
- We consider a range of temperatures $T=1.0$ to $T=4.0$ ($T_{c} \sim 2.269 \ldots$...) covering both phases
- There are $\sim 10^{120}$ possible configurations, for $T \geq 2.7$ the Monte Carlo samples involve only distinct configurations...
- We choose a random ordering of the lattice sites for the classification problems

2D Ising model

Entropy (per spin)

2D Ising model

Free energy (per spin) - from $F=\langle E\rangle-T S$

From Physics back to Machine Learning...

Interlude: Deep Convolutional Neural Networks (DCNN)

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

Interlude: Deep Convolutional Neural Networks (DCNN)

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

Interlude: Deep Convolutional Neural Networks (DCNN)

- Contemporary DCNN are much deeper >50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

Interlude: Deep Convolutional Neural Networks (DCNN)

- Contemporary DCNN are much deeper >50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations..
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

Interlude: Deep Convolutional Neural Networks (DCNN)

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations.
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image..

Interlude: Deep Convolutional Neural Networks (DCNN)

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
> $>$
> which become more and more global until we reach the semantic classification
> - One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image..

Interlude: Deep Convolutional Neural Networks (DCNN)

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image..

Interlude: Deep Convolutional Neural Networks (DCNN)

- Contemporary DCNN are much deeper > 50 layers...
- Going further (deeper) into the network integrates features from wider range of scales...
- The outputs of interior layers are some (nonlocal) feature representations...
- ... which become more and more global until we reach the semantic classification
- One can view a DCNN as a very nontrivial nonlinear goal-directed analog of a Fourier or wavelet transform of the original image...

Physics analogs

MERA

Hashimoto

Physics analogs

MERA

represents a quantum wavefunction

DCNN
cf. Hashimoto
represents probability distribution of natural images.

Physics analogs

MERA

represents a quantum wavefunction

DCNN

Physics analogs

MERA

AdS/CFT

represents a quantum wavefunction

Physics analogs

MERA

represents a quantum wavefunction

AdS/CFT

represents a QFT

Physics analogs

MERA

AdS/CFT

represents a quantum wavefunction
represents a QFT

DCNN
 cf. Hashimoto

Physics analogs

MERA

AdS/CFT

4-dimensional
Minkowski

represents a quantum wavefunction
represents a QFT

DCNN cf. Hashimoto

represents probability distribution of natural images...

General questions:

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) - here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network ~ "holography" for complex probability distributions
look for an analog of complexity...

General questions:

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) - here the deep neural network is used as a tool..
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network "holography" for complex probability distributions

General questions:

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) - here the deep neural network is used as a tool.
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network "holography" for complex probability distributions

General questions:

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) - here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system'

Deep Neural Network

General questions:

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) - here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network

General questions:

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) - here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network ~"holography" for complex probability distributions

General questions:

- Look for interesting observables which characterize the behaviour of the network layers as a function of depth (scale)
- Try to interpret it as a characteristic of the dataset (various kinds of images/learning tasks) - here the deep neural network is used as a tool...
- ... and the image dataset is thought as an analog of a "physical system"

Deep Neural Network ~"holography" for complex probability distributions
look for an analog of complexity...

Complexity in \sim tensor networks and holography

Circuit complexity

- Pick some family of elementary unitary operators ("gates")

$$
|\Psi\rangle=U_{1} \circ U_{2} \circ U_{3} \circ \ldots \circ U_{n}|R E F\rangle
$$

- Define complexity as

Holography

- Complexity proportional to spatial volume

$$
\text { complexity } \propto V_{\perp} \int d z \sqrt{g}
$$

- "additive" over scales \longrightarrow look at something additive over layers.

Complexity in \sim tensor networks and holography Circuit complexity

- Pick some family of elementary unitary operators ("gates")

$$
|\Psi\rangle=U_{1} \circ U_{2} \circ U_{3} \circ \ldots \circ U_{n}|R E F\rangle
$$

- Define complexity as

Holography

- Complexity proportional to spatial volume

$$
\text { complexity } \propto V_{\perp} \int d z \sqrt{g}
$$

- "additive" over scales \longrightarrow look at something additive over layers.

Complexity in \sim tensor networks and holography

Circuit complexity

- Pick some family of elementary unitary operators ("gates")

$$
|\Psi\rangle=U_{1} \circ U_{2} \circ U_{3} \circ \ldots \circ U_{n}|R E F\rangle
$$

- Define complexity as

Holography

- Complexity proportional to spatial volume

- "additive" over scales \longrightarrow look at something additive over layers.

Complexity in \sim tensor networks and holography Circuit complexity

- Pick some family of elementary unitary operators ("gates")

$$
|\Psi\rangle=U_{1} \circ U_{2} \circ U_{3} \circ \ldots \circ U_{n}|R E F\rangle
$$

- Define complexity as

Holography

- Complexity proportional to spatial volume

Complexity in \sim tensor networks and holography

Circuit complexity

- Pick some family of elementary unitary operators ("gates")

$$
|\Psi\rangle=U_{1} \circ U_{2} \circ U_{3} \circ \ldots \circ U_{n}|R E F\rangle
$$

- Define complexity as

$$
\text { complexity } \propto(\log ?) \min \sum_{i} \operatorname{cost}\left(U_{i}\right)
$$

Holography

- Complexity proportional to spatial volume

Complexity in \sim tensor networks and holography

Circuit complexity

- Pick some family of elementary unitary operators ("gates")

$$
|\Psi\rangle=U_{1} \circ U_{2} \circ U_{3} \circ \ldots \circ U_{n}|R E F\rangle
$$

- Define complexity as

$$
\text { complexity } \propto(\log ?) \min \sum_{i} \operatorname{cost}\left(U_{i}\right)
$$

Holography

- Complexity proportional to spatial volume

Complexity in \sim tensor networks and holography

Circuit complexity

- Pick some family of elementary unitary operators ("gates")

$$
|\Psi\rangle=U_{1} \circ U_{2} \circ U_{3} \circ \ldots \circ U_{n}|R E F\rangle
$$

- Define complexity as

$$
\text { complexity } \propto(\log ?) \min \sum_{i} \operatorname{cost}\left(U_{i}\right)
$$

Holography

- Complexity proportional to spatial volume

$$
\text { complexity } \propto V_{\perp} \int d z \sqrt{g}
$$

- "additive" over scales \longrightarrow look at something additive over layers...

Complexity in \sim tensor networks and holography

Circuit complexity

- Pick some family of elementary unitary operators ("gates")

$$
|\Psi\rangle=U_{1} \circ U_{2} \circ U_{3} \circ \ldots \circ U_{n}|R E F\rangle
$$

- Define complexity as

$$
\text { complexity } \propto(\log ?) \min \sum_{i} \operatorname{cost}\left(U_{i}\right)
$$

Holography

- Complexity proportional to spatial volume

$$
\text { complexity } \propto V_{\perp} \int d z \sqrt{g}
$$

- "additive" over scales

Complexity in \sim tensor networks and holography

Circuit complexity

- Pick some family of elementary unitary operators ("gates")

$$
|\Psi\rangle=U_{1} \circ U_{2} \circ U_{3} \circ \ldots \circ U_{n}|R E F\rangle
$$

- Define complexity as

$$
\text { complexity } \propto(\log ?) \min \sum_{i} \operatorname{cost}\left(U_{i}\right)
$$

Holography

- Complexity proportional to spatial volume

$$
\text { complexity } \propto V_{\perp} \int d z \sqrt{g}
$$

- "additive" over scales \longrightarrow look at something additive over layers...

Complexity in \sim tensor networks and holography

Circuit complexity

- Pick some family of elementary unitary operators ("gates")

$$
|\Psi\rangle=U_{1} \circ U_{2} \circ U_{3} \circ \ldots \circ U_{n}|R E F\rangle
$$

- Define complexity as

$$
\text { complexity } \propto(\log ?) \min \sum_{i} \operatorname{cost}\left(U_{i}\right)
$$

Holography

- Complexity proportional to spatial volume

$$
\text { complexity } \propto V_{\perp} \int d z \sqrt{g}
$$

- "additive" over scales \longrightarrow look at something additive over layers...

Complexity for neural networks - heuristics

Do not count parameters but estimate the complexity of a particular computation - the neural network architecture is kept fixed!

- In modern neural networks we have typically ReLU neurons

$$
y_{k}=\operatorname{ReLU}\left(W_{k i} x_{i}+b_{k}\right)
$$

which act either as a linear function or as zero

- It does not make sense to count gates which collapse under composition

$$
A_{1} \circ A_{2} \circ A_{3} \circ A_{4}=A
$$

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Complexity for neural networks - heuristics
Do not count parameters but estimate the complexity of a particular computation

- In modern neural networks we have typically ReLU neurons

$$
y_{k}=\operatorname{ReL} U\left(W_{k i} x_{i}+b_{k}\right)
$$

which act either as a linear function or as zero

- It does not make sense to count gates which collapse under composition

$$
A_{1} \circ A_{2} \circ A_{3} \circ A_{4}=A
$$

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Complexity for neural networks - heuristics
Do not count parameters but estimate the complexity of a particular computation - the neural network architecture is kept fixed!

- In modern neural networks we have typically ReLU neurons

$$
y_{k}=\operatorname{ReL} U\left(W_{k i} x_{i}+b_{k}\right)
$$

which act either as a linear function or as zero

- It does not make sense to count gates which collapse under composition

$$
A_{1} \circ A_{2} \circ A_{3} \circ A_{4}=A
$$

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Complexity for neural networks - heuristics
Do not count parameters but estimate the complexity of a particular computation - the neural network architecture is kept fixed!

- In modern neural networks we have typically ReLU neurons

$$
y_{k}=\operatorname{Re} L U\left(W_{k i} x_{i}+b_{k}\right)
$$

which act either as a linear function or as zero

- It does not make sense to count gates which collapse under composition

$$
A_{1} \circ A_{2} \circ A_{3} \circ A_{4}=A
$$

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Complexity for neural networks - heuristics
Do not count parameters but estimate the complexity of a particular computation - the neural network architecture is kept fixed!

- In modern neural networks we have typically ReLU neurons

$$
y_{k}=\operatorname{Re} L U\left(W_{k i} x_{i}+b_{k}\right)
$$

which act either as a linear function or as zero

- It does not make sense to count gates which collapse under composition

$$
A_{1} \circ A_{2} \circ A_{3} \circ A_{4}=A
$$

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Complexity for neural networks - heuristics
Do not count parameters but estimate the complexity of a particular computation - the neural network architecture is kept fixed!

- In modern neural networks we have typically ReLU neurons

$$
y_{k}=\operatorname{Re} L U\left(W_{k i} x_{i}+b_{k}\right)
$$

which act either as a linear function or as zero

- It does not make sense to count gates which collapse under composition

$$
A_{1} \circ A_{2} \circ A_{3} \circ A_{4}=A
$$

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Complexity for neural networks - heuristics

Do not count parameters but estimate the complexity of a particular computation - the neural network architecture is kept fixed!

- In modern neural networks we have typically ReLU neurons

$$
y_{k}=\operatorname{Re} L U\left(W_{k i} x_{i}+b_{k}\right)
$$

which act either as a linear function or as zero

- It does not make sense to count gates which collapse under composition

$$
A_{1} \circ A_{2} \circ A_{3} \circ A_{4}=A
$$

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Complexity for neural networks - heuristics

Do not count parameters but estimate the complexity of a particular computation - the neural network architecture is kept fixed!

- In modern neural networks we have typically ReLU neurons

$$
y_{k}=\operatorname{Re} L U\left(W_{k i} x_{i}+b_{k}\right)
$$

which act either as a linear function or as zero

- It does not make sense to count gates which collapse under composition

$$
A_{1} \circ A_{2} \circ A_{3} \circ A_{4}=A
$$

- Both the linear function and zero collapse under composition!
- Nontriviality arises with changing the mode of operation (switching on/off)
- Idea: Define complexity in terms of the switching behaviour (nonlinearity!).

Complexity for neural networks

- Define a binary nonlinearity variable ($z_{k}=1$ on, $z_{k}=0$ off)

$$
z_{k}=o\left(W_{k i} x_{i}+b_{k}\right)
$$

- Define the complexity of a layer as the Shannon entropy of the nonlinearities z_{k} :

complexity \equiv entropy of nonlinearity

- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer...
anc add them up if we want

Complexity for neural networks

- Define a binary nonlinearity variable ($z_{k}=1$ on, $z_{k}=0$ off)

$$
z_{k}=\theta\left(W_{k i} x_{i}+b_{k}\right)
$$

- Define the complexity of a layer as the Shannon entropy of the nonlinearities z_{k} :
complexity \equiv entropy of nonlinearity
- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer.
and add them up if we want

Complexity for neural networks

- Define a binary nonlinearity variable ($z_{k}=1$ on, $z_{k}=0$ off)

$$
z_{k}=\theta\left(W_{k i} x_{i}+b_{k}\right)
$$

- Define the complexity of a layer as the Shannon entropy of the nonlinearities z_{k} :

$$
\text { complexity } \equiv \text { entropy of nonlinearity }
$$

- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer.
and add them up if we want

Complexity for neural networks

- Define a binary nonlinearity variable ($z_{k}=1$ on, $z_{k}=0$ off)

$$
z_{k}=\theta\left(W_{k i} x_{i}+b_{k}\right)
$$

- Define the complexity of a layer as the Shannon entropy of the nonlinearities z_{k} :

complexity \equiv entropy of nonlinearity

- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer.
and add them up if we want

Complexity for neural networks

- Define a binary nonlinearity variable ($z_{k}=1$ on, $z_{k}=0$ off)

$$
z_{k}=\theta\left(W_{k i} x_{i}+b_{k}\right)
$$

- Define the complexity of a layer as the Shannon entropy of the nonlinearities z_{k} :

complexity \equiv entropy of nonlinearity

- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer...
and add them up if we want

Complexity for neural networks

- Define a binary nonlinearity variable ($z_{k}=1$ on, $z_{k}=0$ off)

$$
z_{k}=\theta\left(W_{k i} x_{i}+b_{k}\right)
$$

- Define the complexity of a layer as the Shannon entropy of the nonlinearities z_{k} :

complexity \equiv entropy of nonlinearity

- We can study the nonlinearity of the neural network's operation as a function of depth...
- Using the algorithm from the first part of the talk, we can effectively compute the complexity for each layer...
... and add them up if we want

Effective dimension of feature representations

- Complexity by design ignored details of linear operation of the network..
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

```
Algorithm:
    1. Compute the PCA of the layer output
    2. Get the variance ratio explained ri}(\sum\mp@subsup{r}{i}{}=1
3. Compute Shannon entropy of the r ri's
4. Define
```

effective dimension $\equiv \exp \left(S\left[\left\{r_{i}\right\}\right]\right)$

Effective dimension of feature representations

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Effective dimension of feature representations

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Effective dimension of feature representations

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

1. Compute the PCA of the layer output
2. Get the variance ratio explained $r_{i}\left(\sum r_{i}=1\right)$
3. Compute Shannon entropy of the r_{i} 's
4. Define

Effective dimension of feature representations

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

1. Compute the PCA of the layer output
2. Get the variance ratio explained $r_{i}\left(\sum r_{i}=1\right)$
3. Compute Shannon entropy of the r_{i} 's
4. Define

Effective dimension of feature representations

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

1. Compute the PCA of the layer output
2. Get the variance ratio explained $r_{i}\left(\sum r_{i}=1\right)$
3. Compute Shannon entropy of the r_{i} 's
4. Define

Effective dimension of feature representations

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

1. Compute the PCA of the layer output
2. Get the variance ratio explained $r_{i}\left(\sum r_{i}=1\right)$
3. Compute Shannon entropy of the r_{i} 's
4. Define

Effective dimension of feature representations

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

1. Compute the PCA of the layer output
2. Get the variance ratio explained $r_{i}\left(\sum r_{i}=1\right)$
3. Compute Shannon entropy of the r_{i} 's
4. Define

Effective dimension of feature representations

- Complexity by design ignored details of linear operation of the network...
- To capture information on the linear regime, introduce a complementary observable effective dimension of the feature representation of the given layer...

Algorithm:

1. Compute the PCA of the layer output
2. Get the variance ratio explained $r_{i}\left(\sum r_{i}=1\right)$
3. Compute Shannon entropy of the r_{i} 's
4. Define

Numerical experiments

"Holographic" plots

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

"Holographic" plots

CIFAR10

CIFAR10

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ... more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network
"Holographic" plots

CIFAR10

CIFAR10

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

"Holographic" plots

CIFAR10

CIFAR10

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

"Holographic" plots

CIFAR10

CIFAR10

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

"Holographic" plots

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

"Holographic" plots

- The different colors represent different stages of a resnet-56 network (version for CIFAR-10 dataset)
- The network produces richer representations as we go deeper into the network..
- ...more nonlinearity and higher effective dimension...
- We observe increase when going to more difficult datasets especially at the higher levels of the network

Dataset difficulty

- We evaluated complexity and effective dimension averaged over the topmost layers of the resnet-56 network for a variety of datasets
- We find a clear correlation with the intuitive dataset difficulty

Dataset difficulty

- We evaluated complexity and effective dimension averaged over the topmost layers of the resnet-56 network for a variety of datasets

- We find a clear correlation with the intuitive dataset difficulty

Dataset difficulty

- We evaluated complexity and effective dimension averaged over the topmost layers of the resnet-56 network for a variety of datasets

- We find a clear correlation with the intuitive dataset difficulty

What is the origin of the rise in complexity?

- Is the switching behaviour of individual neurons becoming closer to optimal $(p=0.5)$?
- Is the switching increasingly independent?

What is the origin of the rise in complexity?

- Is the switching behaviour of individual neurons becoming closer to optimal $(p=0.5)$?
- Is the switching increasingly independent?

What is the origin of the rise in complexity?

- Is the switching behaviour of individual neurons becoming closer to optimal $(p=0.5)$?
- Is the switching increasingly independent?

Total correlation

Question: Does the increase in complexity occur due to switching behaviour being more close to optimal ($p=0.5$) or due to increased independence of the nonlinearities?

Total correlation

Question: Does the increase in complexity occur due to switching behaviour being more close to optimal ($p=0.5$) or due to increased independence of the nonlinearities?

Total correlation

Question: Does the increase in complexity occur due to switching behaviour being more close to optimal ($p=0.5$) or due to increased independence of the nonlinearities?

Total correlation

Question: Does the increase in complexity occur due to switching behaviour being more close to optimal ($p=0.5$) or due to increased independence of the nonlinearities?

$$
\text { normalized total correlation }=\frac{H\left(Z_{1}\right)+\ldots+H\left(Z_{C}\right)-H\left(Z_{1}, \ldots Z_{C}\right)}{H\left(Z_{1}\right)+\ldots+H\left(Z_{C}\right)}
$$

Total correlation

Question: Does the increase in complexity occur due to switching behaviour being more close to optimal ($p=0.5$) or due to increased independence of the nonlinearities?

For more complicated datasets, the higher level neurons fire in a more independent way - they extract more independent features

Total correlation during training

> Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training.

Clear power-law scaling!

> The scaling exponent is not universal - it seems to depend on the dataset and learning rate

- It is a challenge to understand this behaviour!

Total correlation during training

- Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training...

Clear power-law scaling!

- The scaling exponent is not universal - it seems to depend on the dataset and learning rate
- It is a challenge to understand this behaviour!

Total correlation during training

- Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training...

CIFAR10

Clear power-law scaling!
> The scaling exponent is not universal - it seems to depend on the dataset and learning rate

- It is a challenge to understand this behaviour!

Total correlation during training

- Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training...

CIFAR10

Clear power-law scaling!
\rightarrow The scaling exponent is not universal - it seems to depend on the dataset and learning rate

- It is a challenge to understand this behaviour!

Total correlation during training

- Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training...

CIFAR10

Clear power-law scaling!

- The scaling exponent is not universal - it seems to depend on the dataset and learning rate
- It is a challenge to understand this behaviour!

Total correlation during training

- Since independent switching was the deciding factor for complexity differences between various tasks, it is interesting to study its buildup during training...

CIFAR10

Clear power-law scaling!

- The scaling exponent is not universal - it seems to depend on the dataset and learning rate
- It is a challenge to understand this behaviour!

Summary

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of complexity for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of effective dimension of feature representations
- Clear correlation with the intuitive difficulty of datasets

DNN as "holography" for probability distributions..

- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

Summary

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of complexity for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of effective dimension of feature representations
- Clear correlation with the intuitive difficulty of datasets
- Insights into training..
- There is room for fruitful exchanges between Machine Learning and Physics

Summary

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of complexity for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of effective dimension of feature representations
- Clear correlation with the intuitive difficulty of datasets
- Insights into training..
- There is room for fruitful exchanges between Machine Learning and Physics

Summary

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of complexity for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of effective dimension of feature representations
- Clear correlation with the intuitive difficulty of datasets
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

Summary

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of complexity for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of effective dimension of feature
representations
- Clear correlation with the intuitive difficulty of datasets
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

Summary

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of complexity for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of effective dimension of feature representations
- Clear correlation with the intuitive difficulty of datasets
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

Summary

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of complexity for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of effective dimension of feature representations
- Clear correlation with the intuitive difficulty of datasets
- Insights into training..
- There is room for fruitful exchanges between Machine Learning and Physics

Summary

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of complexity for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of effective dimension of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

Summary

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of complexity for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of effective dimension of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

Summary

- We developed a flexible method for leveraging Machine Learning to estimate entropy from Monte Carlo configurations
- ... by translating the problem into a sequence of classification tasks
- One can use any ML classification algorithm for that...
- We defined a notion of complexity for neural networks which measures nonlinearity of information processing
- ... and a complementary measure of effective dimension of feature representations
- Clear correlation with the intuitive difficulty of datasets DNN as "holography" for probability distributions...
- Insights into training...
- There is room for fruitful exchanges between Machine Learning and Physics

