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Abstract: Observing the motion of test particles in a

Gravitational Wave (“Memory Effect”) could allow to de-

tect the latter. Plane GWs admit a 5-parameter group

of isometries, identified (later) as Lévy-Leblond ’s “Car-

roll” group (1965) with broken rotations which act as sym-

metries for the particle subject to the wave. Following

Souriau (1973), the geodesic eqns can be integrated us-

ing the associated conserved quantities.

Based on:

• “Celestial Mechanics, Conformal Structures and Grav-

itational Waves,” Phys. Rev. D43 (1991) 3907

[hep-th/0512188 [hep-th]]

• “Carroll symmetry of gravitational plane waves,” Class.

Quant. Grav. 34 (2017) 175003 [arXiv:1702.08284

[gr-qc]]

• “The Memory Effect for Plane Gravitational Waves,”

Phys. Lett. B 772 (2017) 743. [arXiv:1704.05997

[gr-qc]].

• “Soft gravitons and the memory effect for plane gravi-

tational waves,” Phys. Rev. D 96 (2017) no.6, 064013

[arXiv:1705.01378 [gr-qc]].
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Plan of the talk:

I. Gravitational Waves (a brief history)

II. Memory Effect

III. Geodesics from symmetry

IV. Eisenhart - Duval framework

V. Isometries & Carroll Structures

VI.∗ Ion traps
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I. Gravitational Waves
(a brief history)

Einstein (1916)

predicts GWs. However,

A. Einstein and N. Rosen “On Gravitational waves,”

J. Franklin Inst. 223 (1937) 43. casts doubt on their

physical existence  controversy, long debate.

e.g.

N. Rosen “Plane polarized waves in the general theory

of relativity,” Phys. Z. Sowjetunion, 12, 366 (1937).

Bondi “Plane Gravitational Waves in General Relativity,”

Nature, 179 (1957) 1072-1073.

H. Bondi, F. A. E. Pirani and I. Robinson “Gravitational

waves in general relativity. 3. Exact plane waves,” Proc.

Roy. Soc. Lond. A 251 (1959) 519.
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J. Weber and J. A. Wheeler

(H bomb . . . )

∼ resonant “Weber bar”
“tuning fork”  bombshell report:
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J. Weber, Phys. Rev. Lett. 22 (1969) 1320

J. Weber “Anisotropy and polarization in the gravitational-

radiation experiments,” Phys. Rev. Lett. 25 (1970) 180.

Attracts lots of attention. Deeply marks entire
generation of physicists.

e.g. G. W. Gibbons S. W. Hawking “Theory of the de-

tection of short bursts of gravitational radiation,” Phys.

Rev. D 4 (1971) 2191. . . . no funding from SRC  
return to theory . . . . . .

Weber’s claims NOT confirmed ⇒Weber dis-
credited see J. Levin https://aeon.co/essays/how-joe-

weber-s-gravity-ripples-turned-out-to-be-all-noise inter-
est in GW-s declines.

F. Károlyházy (1977): “106 missing in sensitivity ? Give

them 106$ – they will do it !”
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Research taken up by Rai Weiss

Kip Thorne go-between teams of

Wheeler (Princeton) & Zeldovich (Moscow)
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Les Houches 1972

Thorne & Grishchuk
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LIGO Laser interferometer ∼ Michelson

1: Beamsplitter (green line) splits coherent light (from

white box) into two beams which reflect off mirrors (cyan

oblongs). Reflected beams recombine, interference pat-

tern detected (purple circle). 2: GW passing over left arm

(yellow) changes length  interference pattern.
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(Hanford - Livingston distant 1900 km, arms 4

km) > 1500 people > 1 billion $ / year . . .
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+ VIRGO

1st direct detection of GW of Virgo, GW170814: binary

black hole merger. GW170817: neutron stars spiralling

closer, finally merging.
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Thorn-Weiss-Barish Nobel 2017

“For as long as 40 years, people have been thinking about

this, trying to make a detection, sometimes failing in the

early days, and then slowly but surely getting the technol-

ogy together to be able to do it” ( Rai Weiss )

[+ Ron Drever †]
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II. Memory Effect

Ya. B. Zel’dovich and A. G. Polnarev , “Radiation

of gravitational waves by a cluster of superdense stars,”

Astron. Zh. 51, 30 (1974)

. . . another, nonresonance, type of de-
tector, consisting of two noninteracting
bodies (such as satellites). [ . . . ] the
distance between a pair of free bodies
should change, and in principle this effect
might possibly serve as a nonresonance
detector. [ . . . ] although distance be-
tween free bodies will change, relative
velocity will become vanishingly small
(for flyby - no proof)

(atomic + H bomb)
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Elaborated by V.B. Braginsky & L. P. Grishchuk

“Kinematic resonance and the memory effect in free mass

gravitational antennas,” Zh. Eksp. Teor. Fiz. 89 744-750

(1985) who introduce

“memory effect” *

“distance between a pair of bodies is dif-

ferent from the initial distance in the pres-

ence of a gravitational radiation pulse.

. . . possible application to detect gravitational

radiation . . . ”

Christodoulou “Nonlinear nature of gravitation and

gravitational wave experiments,” Phys. Rev. Lett. 67 (1991)

1486.

Assumption (GR) : particles follow geodesics. (Spin

???)

* better: mousetrap
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III. Geodesics from symmetry

Fundamental assumption: for very large distances

GW approximated with exact plane GW

H. Bondi, F. A. E. Pirani and I. Robinson “Gravitational

waves in general relativity. 3. Exact plane waves,” Proc.

Roy. Soc. Lond. A 251 (1959) 519 :

plane GWs have 5-parameter group of isometry:

3 translations + 2 WHAT ?

Souriau “Ondes et radiations gravitationnelles,” Collo-

ques Internationaux du CNRS No 220, pp. 243-256. Paris

(1973). symmetry integration of geodesic eqns.

Lévy-Leblond 1965 : “Carroll” group constructed as

c→ 0 contraction of Poincaré group

C. Duval, et al. “Carroll symmetry of gravitational plane

waves,” Class. Quant. Grav. 34 (2017) 175003 [arXiv:1702.08284

[gr-qc]] :

isometries ≡ (broken) Carroll  geodesic mo-

tion found explicitly.
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Geodesics in Brinkmann* coordinates

plane GWs

δijdX
idXj + 2dUdV +Kij(U)XiXjdU2 (1a)

profile Kij(U)XiXj =

1
2A+(U)

(
(X1)2 − (X2)2

)
+A×(U)X1X2

(1b)

where A+ and A× + and × polarization-state

amplitudes. X = (Xi) transverse, U, V light-

cone coords.

Vacuum Einstein solutions : Ricci flat

Rµν = 0⇔ Tr(Kij) = 0. (2)

Sandwich wave: K(U) 6= 0 only in “wave zone”

Ui < U < Uf . Assumption : metric Minkowski in

“before-zone” U < Ui and flat in “after-zone”

Uf < U .

* M. W. Brinkmann, “Einstein spaces which are mapped

conformally on each other,” Math. Ann. 94 (1925) 119–

145.
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• Linearly polarized burst (A× = 0) with Gaus-
sian profile

Kij(U)XiXj =
e−U

2

√
π

(
(X1)2 − (X2)2

)
. (3)

Spacetime for burst with linearly polarized Gaussian profile

A+(u) = exp[−u2].

(Movie-1)
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Geodesics : solution of system

d2X1

dU2
−

1

2
A+X

1 = 0, (4a)

d2X2

dU2
+

1

2
A+X

2 = 0, (4b)

d2V

dU2
+

1

4

dA+

dU

(
(X1)2 − (X2)2

)
+A+

(
X1dX

1

dU
−X2dX

2

dU

)
= 0 .

(4c)

X1,2-components decoupled. Projection of 4D

worldline to transverse (X1−X2) plane indepen-

dent of V (U0) & V̇ (U0).

Assumption: particle initially at rest in (approx)

“before zone”:

X(U) = X0, Ẋ(U) = 0 U ≤ U0. (5)

N.B. For affine parameter (∼ “dot”) −gµνẊµẊµ =

m2 const of the motion. For m = 0 null lift. For

m2 6= 0 shift m2U ⇒ restrict to m = 0.

Enough to solve transverse eqn (4a)-(4b).
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IV. Eisenhart - Duval framework

Relativistic framework for non-relativistic physics

A Bargmann manifold is

(i) a (d+ 2)-dim manif

(ii) endowed with metric of signature (d+ 1,1)

(iii) carries nowhere vanishing, complete, null “ver-
tical” vector ξ, parallel-transported by Levi-Civita
connection, ∇.

NULL GEODESICS UPSTAIRS
project to

NR MOTIONS DOWNSTAIRS
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Bargmann space : (d + 1,1) dim manifold with Lorentz

metric & coordinates (x, t, s), endowed with covariantly

constant null vector ξ = ∂s. Null geodesics project to NR

motions.
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Profile −1
2Kij(U)XiXj in Brinkmann metric (1)

∼ Newton potential

δijdX
idXj + 2dUdV + Kij(U)XiXj dU2

Framework originally proposed by

L. P. Eisenhart, “Dynamical trajectories and geodesics”,

Annals. Math. 30 591-606 (1928) - forgotten

- rediscovered :

C. Duval, G. Burdet, H. P. Kunzle and M. Perrin,

“Bargmann Structures and Newton-Cartan Theory,”

Phys. Rev. D 31 (1985) 1841.

C. Duval, G. W. Gibbons, and P. A. Horvathy, “Ce-

lestial Mechanics, Conformal Structures and Gravitational

Waves,” Phys. Rev. D43, 3907 (1991)

N.B. H. Künzle was told about Eisenhart around

1995 . . .
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For linearly polarized GW with Gaussian profile

A+ = e−U
2

Geodesics for Gaussian burst with various blue/red/green :

initial positions.
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Variation of relative distance & relat velocity

∆X(X,Y ) = |X − Y | ∆Ẋ = |Ẋ − Ẏ |
Latter could (in principle) be observed through
Doppler effect. Braginsky & Thorne “Gravitational-

wave burst with memory and experimental prospects,” Na-

ture (London) 327 123 (1987).

(a) (b)

(a) Particles initially at rest recede from each other after

wave has passed. Their distance, ∆X, increases roughly

linearly in after-zone. (b) Relative velocity, ∆Ẋ, jumps to

an approximately constant but non-zero value.

VELOCITY EFFECT

agrees with Ehlers-Kundt 1962, Souriau 1973
Braginsky-Thorne 1987, Bondi-Pirani 1988
Grishchuk-Polnarev 1989, . . .

contradicts Zel’dovich-Polnarev 1974
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In aftermath of Weber controversy Gibbons &

Hawking 1971 suggested that gravitational col-

lapse is related to 4th derivative of quadrupole

moment of source⇒ quadrupole momentum mod-

eled by fourth derivative of error function −erfc

⇒ yielding linearly polarized GH profile

A+(U) =
1

2

d3(e−U
2
)

dU3
(6)

24



“Time” evolution of GH wave profile for A+(U) = (exp[−U2])′′′

(Movie-2)
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Geodesics for particles initially at rest GW induced by grav-

itational collapse, ∼ 1

2

d3(e−U
2

)

dU3
of GH .
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“Tissot”∗ diagram for the GH “collapse profile” 1
2
d3(e−U

2

)/dU3

(6). Circle at u = u0 = 0 is deformed to ellipse, which at

u = u1 = 0.593342 circle degenerates to line segment,

and so on. u1, u2 = 1.97472 : points where one of the

coordinates vanishes.

Attractive/repulsive directions alternate with sign.

∗ Nicolas-Auguste Tissot (1824–1897) cartographer. The

Tissot indicatrix is a graphical representation a map that

describes its distortion.

(Tissot movie)
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V. Isometries (in Brinkmann)

Bondi et al 1959: metric (11) has 5-dim isom-

etry group. In Brinkmann coords (X, U, V )

δijdX
idXj + 2dUdV +Kij(U)XiXjdU2

cf. in (1), Torre “Gravitational waves: Just plane sym-

metry, ” Gen. Rel. Grav. 38 (2006) 653 : Killing vectors

Si(U)∂i + Ṡi(U)Xi ∂V , ∂V , (7)

“dot” = d/dU . Si, i = 1,2 is solution of vector

Stum-Liouville eqn

S̈i(U) = Kij(U)Sj(U) . (8)

• In Minkowski Kij ≡ 0, (8) solved by

Si = γi + βiU (9)

combination of translations in transverse plane

X1 − X2 + Galilei boosts lifted to Bargmann

space,

Y = (γi + Uβi)∂i +
(
δ +Xiβi

)
∂V . (10)

i = 1,2, δ = const. (5th isometry = “vertical

translation” generated by ∂V ).

• For Kij 6= 0 ???
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Isometries & geodesics (in BJR)

J-M. Souriau 1973 Further in-

sight by using Baldwin-Jeffery-Rosen (BJR) co-

ordinates (x, u, v) metric takes form,

aij(u) dxidxj + 2du dv , (11)

cf. Landau-Lifshitz. a(u) ≡ (aij(u)) is strictly

positive 2×2 matrix. [“potential” KijX
iXj traded

for transverse metric aij].

BJR coords (u,x, v) typically non global ; exhibit

coordinate singularities [caustics] Bondi,Pirani .

Isometries implemented on space-time explicitly ,

u → u,

x → x + H(u) b + c,

v → v − b · x− 1
2b · H(u) b + ν,

(12)
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b, c ∈ R2 ν ∈ R, where H(u) is symmetric 2 × 2

“Souriau” matrix,

H(u) =
∫ u

0
a(t)−1dt. (13)

• for a = Id (Minkowski) ⇒ H(u) = u ⇒ Galilei.

Restriction to u = 0⇒ H(u) = 0  boost imple-

mented by {
x′ = x

v′ = v − b · x
(14)

implementation for u = u0 = const obtained by

“exporting” from u = 0 by matrix H(u0).

(u→ t, v → s)
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Isometry ≡ Lévy-Leblond ’s

“Carroll” group with

broken rotations.

NB not recognized by Souriau, although and LL

were teaching in the same doctoral school in

Marseille ... recalled by Duval in 2017 . . .

Brinkmann coords (X, U, V ) — related to BJR

coords (x, u, v) :

U = u , X = P (u)x , V = v −
1

4
x · ȧ(u)x (15)

where 2× 2 matrix P = (Pij) is solution of

aij =
(
P †P

)
ij
, P̈ = K(u)P , P †Ṗ = Ṗ †P (16)

matrix Sturm-Liouville pb
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N.B. : in u1 = 0.593342, u2 = 1.97472 where

P -matrix becomes singular

(Tissot movie)

Boosts in (14) {
x′ = x

v′ = v − b · x
(17)
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Lévy-Leblond 1965 : Carroll group introduced

as c→ 0 contraction of Poincaré group

J. M. Lévy-Leblond, “Une nouvelle limite non-relativiste

du group de Poincaré,” Ann. Inst. H. Poincaré 3 (1965) 1

Lewis Carroll

Through the Looking Glass and what Alice Found There (1871).

C. Duval, G. W. Gibbons, P. A. Horvathy and P. M. Zhang

“Carroll versus Newton and Galilei: two dual non-Einsteinian

concepts of time,” Class. Quant. Grav. 31 (2014)

085016 [arXiv:1402.0657 [gr-qc]]

33



Galilean space-time, M, described by

(
x
t

)
. Carries sym-

metric, contravariant non-negative [space- co-] “metric”

tensor γ ; kernel is generated by dt ≡ Newton-Cartan structure .

Projects onto absolute time axis.

C. Duval and P. A. Horvathy, “Non-relativistic conformal

symmetries and Newton-Cartan structures,” J. Phys. A 42

(2009), 465206 doi:10.1088/1751-8113/42/46/465206

[arXiv:0904.0531 [math-ph]].
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CARROLL STRUCTURE

Lévy-Leblond 1965, V. D. Sen Gupta , “On an Ana-

logue of the Galileo Group,” Il Nuovo Cimento 44 (1966)

512

consider instead novel “time” coordinate, s,

• Carrollian limit of relativistic time-translations:

x′ = x, and x0′ = x0 + a0  Carrollian “time”-

translations {
x′ = x,

s′ = s+ σ
(18)
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Carroll space-time C described by

(
x
s

)
is endowed with

vector ξ which generates kernel of (singular) [space-] “met-

ric” Ḡ.

defect: Carroll particle can not move

x(s) = const (19)
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Unification Duval–Gibbons–PAH PRD 1991 :

Bargmann space : (d + 1,1) dim manifold with Lorentz

metric & coordinates (x, t, s), endowed with covariantly

constant null vector ξ = ∂s.
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• Factoring out “vertical” translations along ξ,

(d + 1)-dim quotient acquires Newton-Cartan

structure

Bargmann space projects to Galilean space-time.
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• One-parameter family Ct ⊂ B of (d + 1)-dim
sections t = const turns off dtds, leaving singular
“metric” δAB dx

AdxB  Ct admits flat Carroll str .

For t = 0 : C0 =


 x

0
s




t = const slice is “Carroll space-time” Ct embedded into

Bargmann space.

CONSTRUCTION FOR ANY BARGMANN SPACE

Carroll acts on “vertical” slices t = const, actions
“glued together” by H(t) =

∫
a(u)−1du.
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(return to GW [t → u, s → v] :) Noether’s thm

⇒ 5 isometries ⇒ 5 conserved quantities

p=a(u) ẋ , k=x(u)−H(u)p , (20)

interpreted as conserved linear & boost-momentum,

supplemented by m = v̇ = 1.

Extra constant of the motion is e = 1
2gµν ẋµẋν.

Geodesics are timelike/ lightlike/ spacelike if e is

negative/zero/positive.

Conversely, geodesics determined by Noether quan-

tities,

x(u) = H(u)p + k, (21a)

v(u) = −1
2p ·H(u)p + e u+ d, (21b)

Fixing values of conserved quantities, only

quantity to calculate is Souriau matrix H(u) .

• In flat Minkowski space a = 1 ⇒ H(u) = u 1,

yielding free motion

x(u) = up + k, (22a)

v(u) =
(
−1

2|p|
2 + e

)
u+ v0. (22b)

usual boosts / usual motions.
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Consider sandwich wave. In before-zone U <

Ui K = 0 ⇒ SL eqn. solved by P (u) = 1 ⇒
Brinkmann and BJR coords coincide.

By (20) momentum of particle at rest vanishes,
p = 0 for u ≤ Ui because of initial condition. But
p conserved for all u ⇒

p = 0 for all u (23)

Geodesic x(u) = H(u)p + k, cf. (21)

x(u) = x0, v(u) = e u+ v0. (24)

For any profile A+ ! In BJR coords particles
initially at rest remain at rest during and after
passage of wave !!

In Brinkmann coords both GWs and geodesics
are global with no singularity. Solving SL eqns
(16) [e.g. numerically] for P ,

X(U) = P (u)x0, x0 = const (25)

Complicated-looking trajectories in B coords re-
covered: plots overlap perfectly up to point where
BJR coords becomes singular.

Everything comes from P(u) !!!
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Motion for GH collapse profile 1
2
d3(e−U

2

)/dU3 (6). In

after-zone motion is approximately along diverging straight

lines ∼ Newton’s 1st law !!!
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VI. Ion traps

Wolfgang Paul ∗ & Hans-Georg Dehmelt

“Ionenkäfig” ≡ “trap” for storing molecular ions

 Nobel’89.

Paul trap (Lanzhou, Mainz)
Penning trap to measure electron magnetic mo-
ment.

∗ “imaginary part of Wolfgang Pauli”
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Analogy: “saddle” potential over X+−X− plane

Φ =
Φ0

2

(
(X+)2 − (X−)2

)
, Φ0 = const . (26)

For ball put on surface. Force attractive/repulsive

in X+/X− coord, ⇒ bounded oscillations in 1st,

but escaping motion in 2nd direction.

Position stabilized by rotating saddle surface

rotating saddle movies: e.g.

https://www.youtube.com/watch?v=9TH5mFHLmfc

(Movie-5)
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Paul trap: Electric field given by quadrupole po-

tential

Φ =
Φ0

2

(
(X+)2 − (X−)2

)
, Φ0 = const . (27)

Eqs of motion of ion with charge e and mass m

Ẍ± ± aX± = 0, (28)

a = (e/m)Φ0. Opposite signs in (28) come from

relative minus sign in (26), required by Laplace

condition ∆Φ = 0 ∼ no sources (charges) inside

trap. Point X+ = X− = 0 unstable. For a > 0

(say), electric force attractive in X+, and repul-

sive in X− coordinate  bounded oscillations in

the first, but escaping motion in 2nd direction.

Paul adds periodical perturbing electric force,

F = −e
(

Φ0 − Γ0 cosωt
)(

X+

−X−

)
(29)

Time dependent inhomogenous rf voltage changes

sign of the electric force periodically.

45



P.-M. Zhang, et al “Ion traps and the memory effect

for periodic gravitational waves,” Phys. Rev. D 98 (2018)

no.4, 044037 [arXiv:1807.00765 [gr-qc]].

3D Paul trap described by

(X±)′′+
(
a+ 2q cos 2U

)
X± = 0, (30a)

z′′ − 2
(
a+ 2q cos 2U

)
z = 0 . (30b)

where a, q consts. Uncoupled Mathieu equa-

tions. Solutions combinations of (even/odd) Math-

ieu cosine/sine functions C(a, q, τ) and S(a, q, τ).

In suitable range of parameters solutions remain

bounded, while in another one are unbounded.

Motion in a 3D Paul Trap for (i) a = 0.1 (axial symmetry)
(ii) a = 0 (periodic profile). The initial conditions X+(0) =

0, Ẋ+(0) = 1, X−(0) = 5, Ẋ−(0) = 0, z(0) = 0, ż(0) = 1.
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Eisenhart-Duval lift

dX2 + 2dUdV − 2Φ(X, U) dU2 , (31a)

Φ(X, U) = (31b)

1
2(a− 2q cos 2U)

(
(X+)

2 − (X−)
2
)
,

Bargmann space of planar Paul Trap is exact

plane GW. For a = 0 periodic GW.

In weak linearly polarized periodic (LPP) wave, transverse

coordinate X(U) oscillates in bounded “bow tie”-shaped

domain.
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More general profiles: waves with circularly po-
larized periodic profile

K =
[
Kij] =

A0

2

[
cos 2U sin 2U

sin 2U − cos 2U

]
. (32)

A0 = const > 0. Transverse eqns of motion,
X ′′ = KX, supplemented by appropriate initial
conditions. Propose

rest at U = 0 i.e., X ′(0) = 0. (33)

Numerical calculations  for sufficiently weak
wave motions confined to toroidal region:

In weak circularly polarized GW transverse trajectory con-

fined to toroidal region.
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In strong wave trajectory becomes unbounded : particle is

ejected.
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