$\begin{array}{l} \mbox{Hydrolysis of N,N-dimethylindole-3-ethaniminium cation, the} \\ \mbox{oxidized form of the endogenous psychedelic} \\ \mbox{N,N-dimethyltryptamine} \end{array}$

Károly Kubicskó, Richárd D. Kovács, Ödön Farkas

Eötvös Loránd University Faculty of Science Institute of Chemistry

November 10, 2021

ショクショー ション・コン・ション・クロン

Table of contents

2 Results

Details of applied methods 1.

• The time-independent Schrödinger's equation:

$$\hat{H}\Psi = E\Psi \tag{1}$$

• Using the Born–Oppenheimer approximation [1] the motion of electrons and nuclei are separated and can be solved independently:

$$\dot{H}_{e}(\underline{\mathbf{r}},\underline{\mathbf{R}})\Phi_{i}(\underline{\mathbf{r}},\underline{\mathbf{R}}) = E_{i}(\underline{\mathbf{R}})\Phi_{i}(\underline{\mathbf{r}},\underline{\mathbf{R}})$$
(2)

$$\left[\hat{T}_{n}(\underline{\mathbf{R}}) + E_{i}(\underline{\mathbf{R}})\right] \Theta_{ik}(\underline{\mathbf{R}}) = E_{ik} \Theta_{ik}(\underline{\mathbf{R}})$$
(3)

- In our work we focus on the solution of Equation (2), all calculations were performed using the Gaussian 16 C.01 [2] program package.
- The examined chemical systems contain 31–37 atoms.
- Ab initio methods (e.g. MP2, CCSD) found to be extremely time consuming. Therefore, the DFT [3] approach was our choice. $\Delta G_{\text{TS30}}^{\ddagger} = 28.90$

[1] M. Born and J. R. Oppenheimer, Annalen der Physik, 1927, 389, 457-484.

[2] M. J. Frisch, G. W. Trucks and H. B. Schlegel et al., Gaussian 16, Revision C.01, 2016, Gaussian, Inc., Wallingford, CT.

[3] Y. Zhao and D. G. Truhlar, *Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)*, 2008, **120**, 215–241.

Details of applied methods 2.

- The M06-2X hybrid functional [4] with the correlation consistent aug-cc-pVDZ, and aug-cc-pVQZ basis sets [5–7] were applied:
 - M06-2X/aug-cc-pVDZ: geometry optimizations (using tight optimization criteria for the structures [8]) were performed to find stationary points on the PES, and harmonic frequency, thermochemical analysis were also carried out $\rightarrow G_{opt,freq}^{corr}$
 - M06-2X/aug-cc-pVQZ: single point energy (SPE) calculations $\rightarrow E_{spe}^{total}$
- The "SuperFine" integration grid [8] for numerical integrations was used in each computation.
- Implicit solvent model: SMD variation of IEFPCM [9].

[4] Y. Zhao and D. G. Truhlar, Journal of Chemical Theory and Computation, 2011, 7, 669–676.
[5] T. H. Dunning, Journal of Chemical Physics, 1989, 90, 1007–1023.

[6] R. A. Kendall, T. H. Dunning and R. J. Harrison, Journal of Chemical Physics, 1992, 96, 6796–6806.

[7] A. K. Wilson, T. van Mourik and T. H. Dunning, Journal of Molecular Structure: THEOCHEM, 1996, 388, 339-349.

[8] J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Wallingford, CT, 3rd edn, 2015.

[9] A. V. Marenich, C. J. Cramer and D. G. Truhlar, *Journal of Physical Chemistry B*, 2009, 113, 6378-6396.

1日外 (目) こうくきん き のへで

Details of applied methods 3.

• The total Gibbs free energies were computed as

$$G^{\text{total}} = E^{\text{total}}_{\text{spe}} + G^{\text{corr}}_{\text{opt,freq}},\tag{4}$$

where $G_{\text{opt,freq}}^{\text{corr}}$ is the Gibbs free energy correction, determined at T = 36 °C, and p = 1 atm in order to simulate the body environment.

• Knowing the activation barriers (ΔG^{\ddagger}), the corresponding k reaction rate constants were calculated using the Eyring-Polanyi [10–13] formula:

$$k = \frac{\kappa k_{\rm B} T}{h} \exp\left(-\frac{\Delta G^{\ddagger}}{RT}\right) \tag{5}$$

うつん きしんき しんほう (の)

- The lowest k constant is the rate-determining step of the reaction, the corresponding ΔG^{\ddagger} is the highest activation Gibbs free energy.
- [10] H. Eyring, The Journal of Chemical Physics, 1935, 3, 107-115.
- [11] H. Eyring, Chemical Reviews, 1935, 17, 65-67.
- [12] H. Eyring and M. Polanyi, Zeitschrift für Physikalische Chemie, 2013, 227, 1221-1245.

[13] E. V. Anslyn and D. A. Dougherty, *Modern Physical Organic Chemistry*, University Science Books, Mill Valley, CA, 2nd edn, 2006.

Iminium ion hydrolysis

- The hydrolysis of N,N-dimethylindole-3-ethaniminium cation (imDMT⁺) was examined in three different ways:
 - imDMT⁺ + OH⁻ (R_0)
 - imDMT⁺ + OH⁻ + H₂O (R_1)
 - imDMT⁺ + OH⁻ + 2 $H_2O(R_2)$

The reaction steps

- The overall hydrolysis process includes the following steps:
 - Nucleophilic addition of OH⁻ on the C atom
 - Inversion of N atom
 - **(a)** Concerted proton-transfer from ¹O to $N \rightarrow$ rate determining step
 - Dissociation of the zwitterionic aldehyde-amine (indole-3-acetaldehyde and dimethylamine) adduct

Reaction		$\Delta G^{\ddagger} / [\text{kcal mol}^{-1}]$	$\Delta G^{\ddagger} / [\text{kJ mol}^{-1}]$	$k \; / \; [\mathrm{s}^{-1}]$
R ₀	TS10	0.88	3.68	1.13×10^{12}
	TS20	6.91	28.92	1.68×10^{7}
	$TS3_0$	28.90	120.93	4.27×10^{-11}
	$TS4_0$	1.43	5.97	4.11×10^{11}
R_1	TS11	2.56	10.72	5.07×10^{10}
	$TS2_1$	6.01	25.15	8.82×10^{7}
	$TS3_1$	10.44	43.70	2.50×10^{4}
	$TS4_1$	5.01	20.96	5.59×10^8
R_2	$TS1_2$	4.60	19.24	1.19×10^9
	$TS2_2$	7.45	31.17	6.24×10^{6}
	TS3 ₂	6.37	26.65	4.56×10^{7}
	$TS4_2$	6.79	28.39	2.12×10^7

Gibbs free energy profile of the reaction.

イロト イヨト イヨト イヨト

э

3D structures of TS3 transition states of the rate determining steps

うりん き くちょう ういんしょ

Conclusions

- The concerted intramolecular proton-transfer step $TS3_0$ requires the highest activation Gibbs free energy $\Delta G_{TS3_0}^{\dagger}$ in R_0 .
- The addition of one, or two H₂O molecule(s) in R_1 and R_2 opens up the possibility for concerted intermolecular proton-transfers TS3₁, and TS3₂, which decreases the $\Delta G_{\text{TS3}1}^{\ddagger}$ and $\Delta G_{\text{TS3}2}^{\ddagger}$ activation barriers. The differences of Gibbs free energies compared to TS3₀ are:
 - $R_1: \delta(\Delta G^{\ddagger}) = \left[\Delta G^{\ddagger}_{\mathrm{TS3}_1} \Delta G^{\ddagger}_{\mathrm{TS3}_0}\right] = 18.46 \text{ kcal} \cdot \text{mol}^{-1}$
 - R_2 : $\delta(\Delta G^{\ddagger}) = \left[\Delta G_{\mathrm{TS3}_2}^{\ddagger} \Delta G_{\mathrm{TS3}_0}^{\ddagger}\right] = 22.53 \text{ kcal} \cdot \text{mol}^{-1}$

☺ Thank you very much for your attention! ☺