Accelerating the solution of large number of delay differential equations with GPUs

Author: Dániel Nagy Co-author: Dr. Ferenc Hegedűs

GPU days 2021

10. November 2021

Nemzeti Kutatási, Fejlesztési És Innovációs Hivatal

Applications

Some applications of delay differential equations

Field	Cause of the delay	Practical example
Modelling of epidemics	incubation and	forecasting the spread of
	recovery time	a disease

Some applications of delay differential equations

Field	Cause of the delay	Practical example	
Modelling of opidemics	incubation and	forecasting the spread of	
Modeling of epidemics	recovery time	a disease	
Computer control	processing time of	avoiding the stability loss	
	the computers	caused by the processing time	

Some applications of delay differential equations

Field	Cause of the delay	Practical example	
Modelling of opidemics	incubation and	forecasting the spread of	
wodening of epidenincs	recovery time	a disease	
Computer control	processing time of	avoiding the stability loss	
Computer control	the computers	caused by the processing time	
Human balancing	processing time of the	rod balancing on a finger	
	brain (reaction time)		

Some applications of delay differential equations

Field	Cause of the delay	Practical example	
Modelling of opidemics	incubation and	forecasting the spread of	
wodening of epidemics	recovery time	a disease	
Computer control	processing time of	avoiding the stability loss	
Computer control	the computers	caused by the processing time	
Human balancing	processing time of the	rod balancing on a finger	
i iuman balancing	brain (reaction time)		
Sonochemistry	finite wave propagation	simulation of	
Sonochennistry	velocity in fluids	sonochemical reactors	

Main motivation: Solution of delay differential equations in the field of sonochemistry (Sonochemistry Research Group - Technical University of Budapest)

General form

Delay Differential Equation (DDE)

$$\begin{cases} \dot{\mathbf{x}}(t) = f(t, \mathbf{x}(t), \mathbf{x}(t - \tau_1), \mathbf{x}(t - \tau_2) \dots, \mathbf{x}(t - \tau_n)) \\ \mathbf{x}(t < t_0) = \eta(t) \end{cases}$$

- $x \in \mathbb{R}^m$ are the dependent variables
- *m* is the system size
- $\eta(t)$ is the initial function
- $\tau_i = \tau_i(t, \mathbf{x}); \quad i = 1 \dots n$ are the delays

General form

Delay Differential Equation (DDE)

$$\begin{cases} \dot{\mathbf{x}}(t) = f(t, \mathbf{x}(t), \mathbf{x}(t - \tau_1), \mathbf{x}(t - \tau_2) \dots, \mathbf{x}(t - \tau_n)) \\ \mathbf{x}(t < t_0) = \eta(t) \end{cases}$$

- $x \in \mathbb{R}^m$ are the dependent variables
- *m* is the system size
- $\eta(t)$ is the initial function
- $\tau_i = \tau_i(t, \mathbf{x}); \quad i = 1 \dots n$ are the delays

I only discuss constant delay

Efficient numerical solution

- *p*th order Runge–Kutta (RK) method
- ② (p-1)th order interpolation to calculate past values¹
- Interpolation without minimal extra calculations
 - Hermite interpolation (from steps and derivatives)
 - Continuous extension of the underlying RK method (from stages)

¹Alfredo Bellen and Marino Zennaro. *Numerical methods for delay differential equations*. Oxford university press, 2013.

Extremely efficient in case of ordinary differential equations²

- Each ODE assigned to a thread
- Each ODE has different parameters
- Each thread solves the ODE with an RK method
- Each thread uses the same fixed timestep

²Nagy Dániel, Plavecz Lambert, and Hegedűs Ferenc. "The art of solving a large number of non-stiff, low-dimensional ordinary differential equation systems on GPUs and CPUs". In: *Communications in Nonlinear Science and Numerical Simulation* preprint (2020).

Extremely efficient in case of ordinary differential equations²

- Each ODE assigned to a thread
- Each ODE has different parameters
- Each thread solves the ODE with an RK method
- Each thread uses the same fixed timestep
- Same code inside the kernel as on a CPU
- No communication between threads

²Dániel, Lambert, and Ferenc, "The art of solving a large number of non-stiff, low-dimensional ordinary differential equation systems on GPUs and CPUs".

Extremely efficient in case of ordinary differential equations²

- Each ODE assigned to a thread
- Each ODE has different parameters
- Each thread solves the ODE with an RK method
- Each thread uses the same fixed timestep
- Same code inside the kernel as on a CPU
- No communication between threads
- Problem with branches (if-else statements)

²Dániel, Lambert, and Ferenc, "The art of solving a large number of non-stiff, low-dimensional ordinary differential equation systems on GPUs and CPUs".

Extremely efficient in case of ordinary differential equations²

- Each ODE assigned to a thread
- Each ODE has different parameters
- Each thread solves the ODE with an RK method
- Each thread uses the same fixed timestep
- Same code inside the kernel as on a CPU
- No communication between threads
- Problem with branches (if-else statements)

Alternative approach: using the GPU for vector and matrix operations.

²Dániel, Lambert, and Ferenc, "The art of solving a large number of non-stiff, low-dimensional ordinary differential equation systems on GPUs and CPUs".

• Interpolation between past values (because of the delay)

- Interpolation between past values (because of the delay)
 - **O** Data written to the global memory after each step Save actual state
 - 2 Data read from the global memory before each step Read previous state

- Interpolation between past values (because of the delay)
 - Data written to the global memory after each step Save actual state
 - 2 Data read from the global memory before each step Read previous state
- Allocates a lot of global memory
- Example: 10000 first order DDEs each with 10000 steps \rightarrow allocates 1.5 GB memory
- Solution for fixed timestep: circular memory, overwriting values which won't be used anymore

- Interpolation between past values (because of the delay)
 - Data written to the global memory after each step Save actual state
 - 2 Data read from the global memory before each step Read previous state
- Allocates a lot of global memory
- Example: 10000 first order DDEs each with 10000 steps \rightarrow allocates 1.5 GB memory
- Solution for fixed timestep: circular memory, overwriting values which won't be used anymore

Algorithm

- General purpose DDE solver in the MPGOS³ package
 - Arbitrary number of dependent variables
 - Arbitrary number of constant delays
 - Arbitrary number of parameters
- Written in CUDA C++

³Ferenc Hegedűs. Massively Parallel GPU-ODE Solver (MPGOS). URL: https://www.gpuode.com/. Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021

7/19

Algorithm

- General purpose DDE solver in the MPGOS³ package
 - Arbitrary number of dependent variables
 - Arbitrary number of constant delays
 - Arbitrary number of parameters
- Written in CUDA C++
- Methods used
 - 4th order traditional explicit Runge-Kutta method
 - 3rd order Hermite-interpolation

³Hegedűs, Massively Parallel GPU-ODE Solver (MPGOS).

• Initialization on CPU

- Set solution domain and timestep
- Set delays to variables and initial functions
- Set control parameters

Initialization on CPU

- Set solution domain and timestep
- Set delays to variables and initial functions
- Set control parameters
- Fill up circular memory on GPU
 - Dense output only to delayed variables
 - Circular memory is initialized with discrete points of the initial function
 - Homogenous code

• Initialization on CPU

- Set solution domain and timestep
- Set delays to variables and initial functions
- Set control parameters
- Fill up circular memory on GPU
 - Dense output only to delayed variables
 - Circular memory is initialized with discrete points of the initial function
 - Homogenous code
- Set timestep
 - Usually constant except for the end
 - May be changed due to event handling (not implemented yet)

Call stepper (4 stage but only 2 interpolation)

Acceleration the solution DDEs with GPUs

• Save t, x, \dot{x}

- Saving the results of the step for later interpolation
- Only for variables with dense output
- Call user defined function (find local max/min)
- Aligned and coalesced memory access

• Save t, x, \dot{x}

- Saving the results of the step for later interpolation
- Only for variables with dense output
- Call user defined function (find local max/min)
- Aligned and coalesced memory access
- End integration?
 - Endtime is reached or not
 - If not next iteration
 - If yes exit the kernel

- Save t, x, \dot{x}
 - Saving the results of the step for later interpolation
 - Only for variables with dense output
 - Call user defined function (find local max/min)
 - Aligned and coalesced memory access
- End integration?
 - Endtime is reached or not
 - If not next iteration
 - If yes exit the kernel
- Process/save results
 - Copy data to CPU (final steps, circular memory, user defined outputs)

Testing the performance

$\rm Codes^4$

- MPGOS (algorithm described earlier, general)
- Problem specific GPU codes (not general)
- Problem specific CPU codes (not general)
- Commercial programs (Julia only on CPU)

⁴Nagy Dániel. DDE solver tests. URL: https://github.com/nnagyd/DDE_solver_tests.

Testing the performance

$\rm Codes^4$

- MPGOS (algorithm described earlier, general)
- Problem specific GPU codes (not general)
- Problem specific CPU codes (not general)
- Commercial programs (Julia only on CPU)

Hardware

- NvidiaGTX Titan Black (1882 GFLOPS)
- Intel Core i7-10510U (39.2 GFLOPS)

⁴Dániel, DDE solver tests.

Testing setup

Testing the performance

Codes⁴

- MPGOS (algorithm described earlier, general)
- Problem specific GPU codes (not general)
- Problem specific CPU codes (not general)
- Commercial programs (Julia only on CPU)

Hardware

- NvidiaGTX Titan Black (1882 GFLOPS)
- Intel Core i7-10510U (39.2 GFLOPS)

⁴Dániel, DDE solver tests.

Dániel Nagy

Acceleration the solution DDEs with GPUs

Test problems

Delayed logistic equation

$$x'(t) = x(t) \cdot \left[p - x(t-1)\right]$$
$$x(t \le 0) = \eta(t) = 1.5 - \cos(t)$$

 N_p is the number of different pparameters to test. Solution with 10000 timesteps

• Delayed Lorenz equation

Runtime comparison on the Logistic equation

Logistic equation (1st order, 2 arithmetic operations and 1 delay)

Analysing GPU code performance

Logistic equation (1st order, 2 arithmetic operations and 1 delay)

For $N_p = 262144$

Metric	Specific GPU	MPGOS GPU
Runtime [s]	0.413	2.896
Threads	32 imes 8192	16 imes 16384
Blocks	128	128
Achieved occupancy	0.27	0.29
Eligible Warps Per Cycle	3.8	1.26
Memory bandwidth [$\%$]	64	60
Global Memory Load Efficient [%]	95.6	100
Global Memory Store Efficient [%]	95.6	100
Double FLOP Efficiency [%]	26.6	3.83

Runtime comparison on the Lorenz equation

Lorenz equation (3rd order, 9 arithmetic operations and 1 delay)

Analysing GPU code performance

Lorenz equation (3rd order, 9 arithmetic operations and 1 delay)

For $N_p = 262144$

Metric	Specific GPU	MPGOS GPU
Runtime [s]	0.560	4.013
Threads	4 imes 65536	2 imes 131072
Blocks	128	128
Achieved occupancy	0.43	0.24
Memory bandwidth [$\%$]	75	61
Global Memory Load Efficient [%]	91.7	100
Global Memory Store Efficient [%]	95.6	100
Double FLOP Efficiency [%]	44.0	4.9

Summary of the performance test

Performance

• Problem specific GPU solver is $30 \times$ faster than problem specific CPU solver ($50 \times$ double GFLOPS)

Summary of the performance test

Performance

- Problem specific GPU solver is $30 \times$ faster than problem specific CPU solver ($50 \times$ double GFLOPS)
- MPGOS is 30× faster than Julia (fastest commercial CPU solver)
- MPGOS is $6 8 \times$ slower than optimal
- Larger systems has better performance, because it requires more arithmetic operation

Summary of the performance test

Performance

- Problem specific GPU solver is $30 \times$ faster than problem specific CPU solver ($50 \times$ double GFLOPS)
- MPGOS is 30× faster than Julia (fastest commercial CPU solver)
- MPGOS is $6 8 \times$ slower than optimal
- Larger systems has better performance, because it requires more arithmetic operation Possible MPGOS improvements
 - Improving performance
 - Event handling
 - Adaptive methods

Adaptive Runge-Kutta solver on GPU

Problem

- Each thread has a different timestep
- Each thread reads past values with different indices
- Those indices are far in the memory \rightarrow extremely low performance

Adaptive Runge-Kutta solver on GPU

Problem

- Each thread has a different timestep
- Each thread reads past values with different indices
- Those indices are far in the memory \rightarrow extremely low performance
- Solution: Heterogenous CPU-GPU solver
 - Control logic on CPU
 - A kernel is called for each stage (called several times in a step)
 - A kernel only performs arithmetic calculations \rightarrow high efficency
 - $\bullet\,$ Efficiency is lost because data must be copied between the CPU and GPU $\rightarrow\,$ Overlaping calculations

Accelerating DDE solvers on GPUs

Efficient algorithm

- 4th order ERK
- 3rd order Hermite interpolation
- Interpolation without extra calculations *Per thread* approach
- Each ODE assigned to a thread
- Each ODE has different parameters

Code Metrics

Metric	Specific GPU	MPGOS GPU
Runtime [s]	0.413	2.896
Threads	32 imes 8192	16 imes 16384
Blocks	128	128
Achieved occupancy	0.27	0.29
Eligible Warps Per Cycle	3.8	1.26
Memory bandwidth [%]	64	60
Global Memory Load Efficient [%]	95.6	100
Global Memory Store Efficient [%]	95.6	100
Double FLOP Efficiency [%]	26.6	3.83

Dániel Nagy

Thank you for your attention!

- Bellen, Alfredo and Marino Zennaro. *Numerical methods for delay differential equations*. Oxford university press, 2013.
- Dániel, Nagy, Plavecz Lambert, and Hegedűs Ferenc. "The art of solving a large number of non-stiff, low-dimensional ordinary differential equation systems on GPUs and CPUs". In: Communications in Nonlinear Science and Numerical Simulation preprint (2020).
- Dániel, Nagy. DDE solver tests. URL:

https://github.com/nnagyd/DDE_solver_tests.

Hegedűs, Ferenc. Massively Parallel GPU-ODE Solver (MPGOS). URL: https://www.gpuode.com/.