
Accelerating the solution of large number of delay differential
equations with GPUs

Author: Dániel Nagy
Co-author: Dr. Ferenc Hegedűs

GPU days 2021

10. November 2021



Delay differential equations Applications

Some applications of delay differential equations

Field Cause of the delay Practical example

Modelling of epidemics
incubation and
recovery time

forecasting the spread of
a disease

Computer control
processing time of

the computers
avoiding the stability loss

caused by the processing time

Human balancing
processing time of the
brain (reaction time)

rod balancing on a finger

Sonochemistry
finite wave propagation

velocity in fluids
simulation of

sonochemical reactors

Main motivation: Solution of delay differential equations in the field of sonochemistry
(Sonochemistry Research Group - Technical University of Budapest)

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 2 / 19



Delay differential equations Applications

Some applications of delay differential equations

Field Cause of the delay Practical example

Modelling of epidemics
incubation and
recovery time

forecasting the spread of
a disease

Computer control
processing time of

the computers
avoiding the stability loss

caused by the processing time

Human balancing
processing time of the
brain (reaction time)

rod balancing on a finger

Sonochemistry
finite wave propagation

velocity in fluids
simulation of

sonochemical reactors

Main motivation: Solution of delay differential equations in the field of sonochemistry
(Sonochemistry Research Group - Technical University of Budapest)

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 2 / 19



Delay differential equations Applications

Some applications of delay differential equations

Field Cause of the delay Practical example

Modelling of epidemics
incubation and
recovery time

forecasting the spread of
a disease

Computer control
processing time of

the computers
avoiding the stability loss

caused by the processing time

Human balancing
processing time of the
brain (reaction time)

rod balancing on a finger

Sonochemistry
finite wave propagation

velocity in fluids
simulation of

sonochemical reactors

Main motivation: Solution of delay differential equations in the field of sonochemistry
(Sonochemistry Research Group - Technical University of Budapest)

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 2 / 19



Delay differential equations Applications

Some applications of delay differential equations

Field Cause of the delay Practical example

Modelling of epidemics
incubation and
recovery time

forecasting the spread of
a disease

Computer control
processing time of

the computers
avoiding the stability loss

caused by the processing time

Human balancing
processing time of the
brain (reaction time)

rod balancing on a finger

Sonochemistry
finite wave propagation

velocity in fluids
simulation of

sonochemical reactors

Main motivation: Solution of delay differential equations in the field of sonochemistry
(Sonochemistry Research Group - Technical University of Budapest)

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 2 / 19



Delay differential equations Mathematical description

General form

Delay Differential Equation (DDE){
ẋ(t) = f

(
t, x(t), x(t− τ1), x(t− τ2) . . . , x(t− τn)

)
x(t < t0) = η(t)

x ∈ Rm are the dependent variables
m is the system size
η(t) is the initial function
τi = τi(t, x); i = 1 . . . n are the delays

I only discuss constant delay

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 3 / 19



Delay differential equations Mathematical description

General form

Delay Differential Equation (DDE){
ẋ(t) = f

(
t, x(t), x(t− τ1), x(t− τ2) . . . , x(t− τn)

)
x(t < t0) = η(t)

x ∈ Rm are the dependent variables
m is the system size
η(t) is the initial function
τi = τi(t, x); i = 1 . . . n are the delays

I only discuss constant delay

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 3 / 19



Delay differential equations Mathematical description

Efficient numerical solution

1 pth order Runge–Kutta (RK) method
2 (p− 1)th order interpolation to calculate past values1

3 Interpolation without minimal extra calculations
Hermite interpolation (from steps and derivatives)
Continuous extension of the underlying RK method (from stages)

1Alfredo Bellen and Marino Zennaro. Numerical methods for delay differential equations. Oxford university
press, 2013.

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 4 / 19



Numerical solution on GPUs Solution of ODEs

Per-thread approach

Extremely efficient in case of ordinary differential equations2

Each ODE assigned to a thread
Each ODE has different parameters
Each thread solves the ODE with an RK method
Each thread uses the same fixed timestep

Same code inside the kernel as on a CPU
No communication between threads
Problem with branches (if-else statements)

Alternative approach: using the GPU for vector and matrix operations.

2Nagy Dániel, Plavecz Lambert, and Hegedűs Ferenc. “The art of solving a large number of non-stiff,
low-dimensional ordinary differential equation systems on GPUs and CPUs”. In: Communications in
Nonlinear Science and Numerical Simulation preprint (2020).

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 5 / 19



Numerical solution on GPUs Solution of ODEs

Per-thread approach

Extremely efficient in case of ordinary differential equations2

Each ODE assigned to a thread
Each ODE has different parameters
Each thread solves the ODE with an RK method
Each thread uses the same fixed timestep
Same code inside the kernel as on a CPU
No communication between threads

Problem with branches (if-else statements)
Alternative approach: using the GPU for vector and matrix operations.

2Dániel, Lambert, and Ferenc, “The art of solving a large number of non-stiff, low-dimensional ordinary
differential equation systems on GPUs and CPUs”.

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 5 / 19



Numerical solution on GPUs Solution of ODEs

Per-thread approach

Extremely efficient in case of ordinary differential equations2

Each ODE assigned to a thread
Each ODE has different parameters
Each thread solves the ODE with an RK method
Each thread uses the same fixed timestep
Same code inside the kernel as on a CPU
No communication between threads
Problem with branches (if-else statements)

Alternative approach: using the GPU for vector and matrix operations.

2Dániel, Lambert, and Ferenc, “The art of solving a large number of non-stiff, low-dimensional ordinary
differential equation systems on GPUs and CPUs”.

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 5 / 19



Numerical solution on GPUs Solution of ODEs

Per-thread approach

Extremely efficient in case of ordinary differential equations2

Each ODE assigned to a thread
Each ODE has different parameters
Each thread solves the ODE with an RK method
Each thread uses the same fixed timestep
Same code inside the kernel as on a CPU
No communication between threads
Problem with branches (if-else statements)

Alternative approach: using the GPU for vector and matrix operations.

2Dániel, Lambert, and Ferenc, “The art of solving a large number of non-stiff, low-dimensional ordinary
differential equation systems on GPUs and CPUs”.

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 5 / 19



Numerical solution on GPUs Solution of DDEs

Interpolation of memory usage.

Interpolation between past values (because of the delay)

1 Data written to the global memory after each step – Save actual state
2 Data read from the global memory before each step – Read previous state

Allocates a lot of global memory
Example: 10000 first order DDEs each with 10000 steps→ allocates 1.5 GB memory
Solution for fixed timestep: circular memory, overwriting values which won’t be
used anymore

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 6 / 19



Numerical solution on GPUs Solution of DDEs

Interpolation of memory usage.

Interpolation between past values (because of the delay)
1 Data written to the global memory after each step – Save actual state
2 Data read from the global memory before each step – Read previous state

Allocates a lot of global memory
Example: 10000 first order DDEs each with 10000 steps→ allocates 1.5 GB memory
Solution for fixed timestep: circular memory, overwriting values which won’t be
used anymore

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 6 / 19



Numerical solution on GPUs Solution of DDEs

Interpolation of memory usage.

Interpolation between past values (because of the delay)
1 Data written to the global memory after each step – Save actual state
2 Data read from the global memory before each step – Read previous state

Allocates a lot of global memory
Example: 10000 first order DDEs each with 10000 steps→ allocates 1.5 GB memory
Solution for fixed timestep: circular memory, overwriting values which won’t be
used anymore

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 6 / 19



Numerical solution on GPUs Solution of DDEs

Interpolation of memory usage.

Interpolation between past values (because of the delay)
1 Data written to the global memory after each step – Save actual state
2 Data read from the global memory before each step – Read previous state

Allocates a lot of global memory
Example: 10000 first order DDEs each with 10000 steps→ allocates 1.5 GB memory
Solution for fixed timestep: circular memory, overwriting values which won’t be
used anymore

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 6 / 19



Numerical solution on GPUs Solution of DDEs

Algorithm

General purpose DDE solver in the MPGOS3 package
Arbitrary number of dependent variables
Arbitrary number of constant delays
Arbitrary number of parameters

Written in CUDA C++

Methods used
4th order traditional explicit Runge–Kutta method
3rd order Hermite-interpolation

3Ferenc Hegedűs. Massively Parallel GPU-ODE Solver (MPGOS). URL: https://www.gpuode.com/.
Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 7 / 19

https://www.gpuode.com/


Numerical solution on GPUs Solution of DDEs

Algorithm

General purpose DDE solver in the MPGOS3 package
Arbitrary number of dependent variables
Arbitrary number of constant delays
Arbitrary number of parameters

Written in CUDA C++
Methods used

4th order traditional explicit Runge–Kutta method
3rd order Hermite-interpolation

3Hegedűs, Massively Parallel GPU-ODE Solver (MPGOS).
Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 7 / 19



Numerical solution on GPUs Solution of DDEs

Main steps

Initialize objects on CPU

Fill up circular memory

Set timestep

Call stepper

End integration?No

Process/save results

Yes

O
n 

G
P

U

Initialization on CPU
Set solution domain and timestep
Set delays to variables and initial functions
Set control parameters

Fill up circular memory on GPU
Dense output only to delayed variables
Circular memory is initialized with discrete
points of the initial function
Homogenous code

Set timestep
Usually constant except for the end
May be changed due to event handling (not
implemented yet)

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 8 / 19



Numerical solution on GPUs Solution of DDEs

Main steps

Initialize objects on CPU

Fill up circular memory

Set timestep

Call stepper

End integration?No

Process/save results

Yes

O
n 

G
P

U

Initialization on CPU
Set solution domain and timestep
Set delays to variables and initial functions
Set control parameters

Fill up circular memory on GPU
Dense output only to delayed variables
Circular memory is initialized with discrete
points of the initial function
Homogenous code

Set timestep
Usually constant except for the end
May be changed due to event handling (not
implemented yet)

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 8 / 19



Numerical solution on GPUs Solution of DDEs

Main steps

Initialize objects on CPU

Fill up circular memory

Set timestep

Call stepper

End integration?No

Process/save results

Yes

O
n 

G
P

U

Initialization on CPU
Set solution domain and timestep
Set delays to variables and initial functions
Set control parameters

Fill up circular memory on GPU
Dense output only to delayed variables
Circular memory is initialized with discrete
points of the initial function
Homogenous code

Set timestep
Usually constant except for the end
May be changed due to event handling (not
implemented yet)

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 8 / 19



Numerical solution on GPUs Solution of DDEs

Main steps

Initialize objects on CPU

Fill up circular memory

Set timestep

Call stepper

End integration?No

Process/save results

Yes

O
n 

G
P

U

Initialization on CPU
Set solution domain and timestep
Set delays to variables and initial functions
Set control parameters

Fill up circular memory on GPU
Dense output only to delayed variables
Circular memory is initialized with discrete
points of the initial function
Homogenous code

Set timestep
Usually constant except for the end
May be changed due to event handling (not
implemented yet)

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 8 / 19



Numerical solution on GPUs Solution of DDEs

Call stepper (4 stage but only 2 interpolation)

Initialize objects on CPU

Fill up circular memory

Set timestep

Call stepper

End integration?No

Process/save results

Yes

O
n 

G
P

U

call DDE 1

calculate past values

call DDE 2

call DDE 3

calculate past values

call DDE 4

make step

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 9 / 19



Numerical solution on GPUs Solution of DDEs

Main steps

Initialize objects on CPU

Fill up circular memory

Set timestep

Call stepper

End integration?No

Process/save results

Yes

O
n 

G
P

U

Save t, x, ẋ
Saving the results of the step for later
interpolation
Only for variables with dense output
Call user defined function (find local
max/min)
Aligned and coalesced memory access

End integration?
Endtime is reached or not
If not next iteration
If yes exit the kernel

Process/save results
Copy data to CPU (final steps, circular
memory, user defined outputs)

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 10 / 19



Numerical solution on GPUs Solution of DDEs

Main steps

Initialize objects on CPU

Fill up circular memory

Set timestep

Call stepper

End integration?No

Process/save results

Yes

O
n 

G
P

U

Save t, x, ẋ
Saving the results of the step for later
interpolation
Only for variables with dense output
Call user defined function (find local
max/min)
Aligned and coalesced memory access

End integration?
Endtime is reached or not
If not next iteration
If yes exit the kernel

Process/save results
Copy data to CPU (final steps, circular
memory, user defined outputs)

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 10 / 19



Numerical solution on GPUs Solution of DDEs

Main steps

Initialize objects on CPU

Fill up circular memory

Set timestep

Call stepper

End integration?No

Process/save results

Yes

O
n 

G
P

U

Save t, x, ẋ
Saving the results of the step for later
interpolation
Only for variables with dense output
Call user defined function (find local
max/min)
Aligned and coalesced memory access

End integration?
Endtime is reached or not
If not next iteration
If yes exit the kernel

Process/save results
Copy data to CPU (final steps, circular
memory, user defined outputs)

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 10 / 19



Performance Testing setup

Testing the performance

Codes4

MPGOS (algorithm described earlier,
general)
Problem specific GPU codes (not
general)
Problem specific CPU codes (not
general)
Commercial programs (Julia only on
CPU)

Hardware
NvidiaGTX Titan Black (1882 GFLOPS)
Intel Core i7-10510U (39.2 GFLOPS)

Test problems
Delayed logistic equation

x′(t) = x(t) ·
[
p− x(t− 1)

]
x(t ≤ 0) = η(t) = 1.5− cos(t)

Np is the number of different p
parameters to test. Solution with 10000
timesteps
Delayed Lorenz equation

4Nagy Dániel. DDE solver tests. URL: https://github.com/nnagyd/DDE_solver_tests.
Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 11 / 19

https://github.com/nnagyd/DDE_solver_tests


Performance Testing setup

Testing the performance

Codes4

MPGOS (algorithm described earlier,
general)
Problem specific GPU codes (not
general)
Problem specific CPU codes (not
general)
Commercial programs (Julia only on
CPU)

Hardware
NvidiaGTX Titan Black (1882 GFLOPS)
Intel Core i7-10510U (39.2 GFLOPS)

Test problems
Delayed logistic equation

x′(t) = x(t) ·
[
p− x(t− 1)

]
x(t ≤ 0) = η(t) = 1.5− cos(t)

Np is the number of different p
parameters to test. Solution with 10000
timesteps
Delayed Lorenz equation

4Dániel, DDE solver tests.
Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 11 / 19



Performance Testing setup

Testing the performance

Codes4

MPGOS (algorithm described earlier,
general)
Problem specific GPU codes (not
general)
Problem specific CPU codes (not
general)
Commercial programs (Julia only on
CPU)

Hardware
NvidiaGTX Titan Black (1882 GFLOPS)
Intel Core i7-10510U (39.2 GFLOPS)

Test problems
Delayed logistic equation

x′(t) = x(t) ·
[
p− x(t− 1)

]
x(t ≤ 0) = η(t) = 1.5− cos(t)

Np is the number of different p
parameters to test. Solution with 10000
timesteps
Delayed Lorenz equation

4Dániel, DDE solver tests.
Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 11 / 19



Performance Logistic equation

Runtime comparison on the Logistic equation
Logistic equation (1st order, 2 arithmetic operations and 1 delay)

100 1000 104 105
0.001

0.010

0.100

1

10

100

Number of parameters

R
un
tim
e
[s
]

MPGOS

Specific GPU

Specific CPU

Julia

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 12 / 19



Performance Logistic equation

Analysing GPU code performance
Logistic equation (1st order, 2 arithmetic operations and 1 delay)

For Np = 262144

Metric Specific GPU MPGOS GPU
Runtime [s] 0.413 2.896

Threads 32× 8192 16× 16384
Blocks 128 128

Achieved occupancy 0.27 0.29
Eligible Warps Per Cycle 3.8 1.26
Memory bandwidth [%] 64 60

Global Memory Load Efficient [%] 95.6 100
Global Memory Store Efficient [%] 95.6 100

Double FLOP Efficiency [%] 26.6 3.83

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 13 / 19



Performance Lorenz equation

Runtime comparison on the Lorenz equation
Lorenz equation (3rd order, 9 arithmetic operations and 1 delay)

100 1000 104 105
0.001

0.010

0.100

1

10

100

Number of parameters

R
un
tim
e
[s
]

MPGOS

Specific GPU

Specific CPU

Julia

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 14 / 19



Performance Lorenz equation

Analysing GPU code performance
Lorenz equation (3rd order, 9 arithmetic operations and 1 delay)

For Np = 262144

Metric Specific GPU MPGOS GPU
Runtime [s] 0.560 4.013

Threads 4× 65536 2× 131072
Blocks 128 128

Achieved occupancy 0.43 0.24
Memory bandwidth [%] 75 61

Global Memory Load Efficient [%] 91.7 100
Global Memory Store Efficient [%] 95.6 100

Double FLOP Efficiency [%] 44.0 4.9

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 15 / 19



Further plans

Summary of the performance test

Performance
Problem specific GPU solver is 30× faster than problem specific CPU solver (50×
double GFLOPS)

MPGOS is 30× faster than Julia (fastest commercial CPU solver)
MPGOS is 6− 8× slower than optimal
Larger systems has better performance, because it requires more arithmetic operation

Possible MPGOS improvements
Improving performance
Event handling
Adaptive methods

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 16 / 19



Further plans

Summary of the performance test

Performance
Problem specific GPU solver is 30× faster than problem specific CPU solver (50×
double GFLOPS)
MPGOS is 30× faster than Julia (fastest commercial CPU solver)
MPGOS is 6− 8× slower than optimal
Larger systems has better performance, because it requires more arithmetic operation

Possible MPGOS improvements
Improving performance
Event handling
Adaptive methods

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 16 / 19



Further plans

Summary of the performance test

Performance
Problem specific GPU solver is 30× faster than problem specific CPU solver (50×
double GFLOPS)
MPGOS is 30× faster than Julia (fastest commercial CPU solver)
MPGOS is 6− 8× slower than optimal
Larger systems has better performance, because it requires more arithmetic operation

Possible MPGOS improvements
Improving performance
Event handling
Adaptive methods

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 16 / 19



Further plans

Adaptive Runge–Kutta solver on GPU

Problem
Each thread has a different timestep
Each thread reads past values with different indices
Those indices are far in the memory→ extremely low performance

Solution: Heterogenous CPU-GPU solver
Control logic on CPU
A kernel is called for each stage (called several times in a step)
A kernel only performs arithmetic calculations→ high efficency
Efficiency is lost because data must be copied between the CPU and GPU→
Overlaping calculations

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 17 / 19



Further plans

Adaptive Runge–Kutta solver on GPU

Problem
Each thread has a different timestep
Each thread reads past values with different indices
Those indices are far in the memory→ extremely low performance

Solution: Heterogenous CPU-GPU solver
Control logic on CPU
A kernel is called for each stage (called several times in a step)
A kernel only performs arithmetic calculations→ high efficency
Efficiency is lost because data must be copied between the CPU and GPU→
Overlaping calculations

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 17 / 19



Summary

Accelerating DDE solvers on GPUs

Efficient algorithm
• 4th order ERK
• 3rd order Hermite interpolation
• Interpolation without extra calculations
Per thread approach
• Each ODE assigned to a thread
• Each ODE has different parameters

Initialize objects on CPU

Fill up circular memory

Set timestep

Call stepper

End integration?No

Process/save results

Yes

O
n 

G
P

U

Runtime comparision

100 1000 104 105
0.001

0.010

0.100

1

10

100

Number of parameters

R
un
tim
e
[s
]

MPGOS

Specific GPU

Specific CPU

Julia

Code Metrics

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 18 / 19



Summary

Thank you for your attention!

Bellen, Alfredo and Marino Zennaro. Numerical methods for delay differential
equations. Oxford university press, 2013.

Dániel, Nagy, Plavecz Lambert, and Hegedűs Ferenc. “The art of solving a large
number of non-stiff, low-dimensional ordinary differential equation systems
on GPUs and CPUs”. In: Communications in Nonlinear Science and Numerical
Simulation preprint (2020).

Dániel, Nagy. DDE solver tests. URL:
https://github.com/nnagyd/DDE_solver_tests.

Hegedűs, Ferenc. Massively Parallel GPU-ODE Solver (MPGOS). URL:
https://www.gpuode.com/.

Dániel Nagy Acceleration the solution DDEs with GPUs 10.11.2021 19 / 19

https://github.com/nnagyd/DDE_solver_tests
https://www.gpuode.com/

	Introduction
	Delay differential equations
	Applications
	Mathematical description

	Numerical solution on GPUs
	Solution of ODEs
	Solution of DDEs

	Performance
	Testing setup
	Logistic equation
	Lorenz equation

	Further plans
	Summary
	References

