
A review of our last article

I C.Bild–D.A. Deckert–H.Ruhl. Phys. Rev. D, 99 (2019)
I Dirac’s derivation of LAD equation: unjustified
Gauss-Stokes theorem, Taylor expansion, limit to a point

I rigid spherical shell, radious ε, uniform continuous charge
distribution; world tube

I Basic assumption: the electromagnetic fields outside the
world tube of the shell and the point charge at the centre
are equal.

I Equation with time delay ε.

Problems
1. the world tube breaks down for accelerations higher than 1

ε

2. the basic assumption is not valid
Invalidity is proved by Distribution Theory.



Spacetime formulae

T. Matolcsi: Spacetime without Reference Frames, Minkowski
Institute Press, 2020

I Spacetime points x , y . . . spacetime vectors x,y , . . .
I If x , y are spacetime points then x − y is a spacetime vector
I x · y ∼ xkyk , L · x ∼ Likxk , x ⊗ y ∼ x iyk

I absolute velocity u, u · u = −1,

I Spacetime differentiation D ∼ ∂k , D ·T ∼ ∂kT ik



Distributions in spacetime

The electromagnetic quantites are considered Distributions

Pole taming (Gelfand)
I ρ(q) := |q| (q ∈ S)
I 1

ρ2+m is not locally integrable if m is a positive integer

I
(
tm 1

ρ2+m

∣∣∣ ψ) :=
∫ ψ(q)−T (m−1)

ψ
(q)

|q|2+m dq

I T (m−1)
ψ is

– on the support of ψ: the Taylor polynomial of order
(m − 1) at zero of ψ
– outside the support of ψ: zero



Electrostatics

An important notion
I Charge distributions extraneous to each other: disjoint

supports
I Electric field extraneous to a charge distribution: its

producing charge distribution is extraneous to the one in
question



Electrostatic energies (by Jackson)
I Point charge e at space point qe , extraneous potential V ,

extraneous electric energy: eV (qe); charge density ρ,
extraneous potential, extraneous electric energy density: ρV

I Point charges, self-energy: the work done by transporting
e1 . . . , en from the infinity to their places q1, . . . , qn

I 1. step: no work for the first charge, the self-energy is zero
I 2. step: 1

4π
e1e2

4π|q2−q1| = 1
2
(
e1V2(q1) + e2V1(q2)

)
I n. step:

1
2

n∑
k 6=i=1

ekei
4π|qk − qi |

= 1
2

n∑
k=1

(
ek(V − Vk)(qk)

)
I More and more particles with smaller and smaller charges

together → continuous charge distribution

Without a serious objection, 1
2ρV can be accepted as the self-

energy density of a charge density ρ in its own potential V



Electrostatic energies (by Jackson)
I ρV = (divE)V = div(EV )−E · gradV =

= div(EV ) + |E|2 (divE = ρ)
I The total self-energy (Gauss theorem)

1
2

∫
ρV = 1

2

∫
|E|2

I ‘Electric self-energy density’ = 1
2 |E|

2

I For a point charge: the electric self-energy is infinite

Comments
ρV is zero where ρ is zero but |E|2 is not zero there

It is unjustified to consider 1
2 |E|

2 the self-energy density of a
static electric field E. It has the only physical meaning that its
integral over all the space is the total self-energy

Amazing and shocking:
first step “the electric self-energy of a point charge is zero”
conclusion “the electric self-energy of a point charge is infinite”



Electric self-energy of a point charge

I The infinite self-electric energy: three times incorrect
reasoning:
1. 1

2ρV does not make sense for a point charge
2. 1

2 |E|
2 is not the self-energy density even in the continuous case

3. Gauss theorem is not applicable
I 1

2 |E|
2 is not locally integrable

I 1
2 |E|

2 has a pole at the space point where the charge is
I 1

2tm|E|2, mathematical construction; it could have the only
physical meaning: its ‘integral’ is the self-energy of the point
charge

I 1
2tm|E|2 does have this physical meaning: the self-energy is
zero: (1

2tm|E|2
∣∣∣ 1) = 0



Electrostatic forces
I Point charge e at space point qe , extraneous electric field E,

extraneous force: eE(qe); charge density ρ, extraneous
electric field E, extraneous force density: ρE

I A point charge does not act on itself: its self-force is zero
I Point charges, self-force:

∑n
k=1 ek(E −Ek)(qk)

I More and particles with smaller and smaller charges together
→ continuous charge distribution

Without a serious objection, ρE can be accepted as the self-force
density of the charge density ρ in its own electric field E

I ‘Electrostatical stress tensor’ P := −E ⊗E + 1
2 |E|

21S
−divP = ρE (divE = ρ, E is produced by ρ)

Comment
ρE is zero where ρ is zero but P is not zero there:

It is unjustified to consider P a real stress tensor of a
static electric field. It has the only physical meaning
that its negative divergence is the self-force density



Electrostatic self-force of a point charge

I The fictitious stress tensor P := −E ⊗E + 1
2 |E|

21S is not
locally integrable

I P has a pole at the space point where the charge is
I tmP, mathematical construction; it could have the only

physical meaning: its negative divergence is the self-force of
the point charge

I tmP does have this physical meaning: the self-force is zero:

−div(tmP) = 0



Beyond statics
I Point charge e, velocity v , extraneous electric and magnetic

field E and B, extraneous force: e(E + v ×B)
I Charge density ρ, velocity field v , extraneous electric and

magnetic fields, extraneous force density: ρ(E + v ×B)
I A non-inertial point charge acts on itself, self-force: fs
I Point charges, self-force:

n∑
k=1

ek
(
(E −Ek) + vk × (B −Bk)

)
+

n∑
k=1

fs,k

I More and more particles with smaller and smaller charges
together → continuous charge distribution:

ρ(E + v ×B)+?
? 6= 0 most probably
Contrary to electrostatics, it is questionable and even
more than questionable that ρ(E+v×B) = ρE+ i×B
is the self-force density of ρ in its own fields E and B



Spacetime formulation; continuous case
I Absolute current density j ∼ (ρ, i)
I Electromagnetic field F ∼ (E,B)
I F · j ∼ (ρE, ρE + i ×B); extraneous absolute force density

It is more than questionable that F · j is the absolute
force density of j in its own field F

I ‘Energy-momentum tensor’ T := −F · F − 1
4(TrF · F)1

I The time-time component of T is 1
2(|E|2 + |B|2)

I The space-space component of T is −E⊗E + 1
2 |E|

21S + . . .

It is unjustified to consider T a
real energy-momentum tensor

I −D ·T = F · j (D · F = j, F is produced by j)

It is more than questionable that T has the physical
meaning that its negative spacetime divergence is the
absolute self-force density



Spacetime formulation; point charge
I Existence of a point particle in spacetime: world line (one

dimensional submanifold)
I World line function r, world line Ranr , Lebesgue measure
λRanr

I A point charge e, world line function r , spacetime current:
eṙλRanr

I Given r , retarded proper time: sr (x), x − r(sr (x)) is
future-lightlike

I A point charge e, given r , produced electromagnetic potential
(Liénard–Wiechert)

x 7→ e
4π

ṙ(sr (x))
−ṙ(sr (x)) ·

(
x − r(sr (x)

)
I Electromagnetic field F[r ] is some functional of the given r
I Fictitious energy-momentum tensor

T[r ] := −F[r ] · F[r ]− 1
4(TrF[r ] · F[r ])1

is some functional of the given r



Spacetime formulation; point charge

I T[r ] is not locally integrable
I T[r ] is not differentiable on the world line
I Nevertheless, T[r ] can be expounded, in a convenient sense,

in powers of the ‘radial distance’ from the world line
I T[r ] has a pole in ‘radial distance’ on the world line
I tmT[r ], mathematical construction; it could have the only

physical meaning: its negative spacetime divergence is the
self-force of the point charge but even this meaning is
questionable

I It is proved that

−D · tmT[r ] = 1
4π

2e2

3 (ṙ ∧ ...r ) · ṙλRanr



On the LAD equation

I We obtained the usual self-force for a given world line
function

I It is unjustified to put this self-force in a Newtonian-like
equation to obtain the LAD equation which would serve to
determine the world line function

I Fundamental problem: both electrodynamics and mechanics
in their known forms are theories of action:
– the Maxwell equations define the electromagnetic field F
produced by a given world line function r of a particle
– the Newtonian equation defines the world line function r of
a particle in a given force (e.g. the Lorentz force in an
extraneous electromagnetic field F)

I At present we have not a well working theory of interaction
which would define both F and r together



On the LAD equation
I Usual conception: the Newtonian equation for a point charge

under the action of a given force f , is replaced with the
balance equation

−D · (T m[r ] + T e[F]) + f (r , ṙ)λRanr = 0

I It seems evident that T m[r ] = mṙ ⊗ ṙλRanr and then

mr̈λRanr = f (r , ṙ)λRanr −D · T e[F ]

D · F = ṙλRanr , D ∧ F = 0
would describe that r and F determine each other mutually

I It is not sure that this is a good system of equations with a
convenient T e[F]

I It is sure that T e[F ] cannot be replaced with tmT[r ]
obtained for a given r

I The LAD equation (T e[F] replaced with tmT[r ]) is a
misconception; its pathological properties are not surprising



On the self-force

I To get the usual self-force, the unjustified use of Gauss-Stokes
theorem, Taylor expansion, limit to a point are ruled out by
pole taming

I The usual formula of the self-force can be possibly accepted
only for a given spacetime existence of a point charge

I If the force f is necessary for bringing about a given r without
radiation i.e. mr̈ = f (r , ṙ) would valid then besides f , the
force − 1

4π
2e2

3 (ṙ ∧ ...r ) · ṙ , opposite to the self-force, must be
applied for obtaining the desired r . An actual example is an
elementary particle revolved in a cyclotron



Equation, equality

I Equation is a definition
I Equality is a statement
I LAD ‘equation’? No: runaway solutions
I LAD ‘equality’? No: see C.J.Eliezer, Mathematical

Proceedings of the Cambridge Philosophical Society, Vol 39.
Nr 3. 1943
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Major approaches

Nonlocal modi�cations of the electromagnetic part, the Maxwell
equations, [1, 2, 3].

Dissipative modi�cations of the mechanical part, the Newton equation
[4, 5, 6, 7].

A suitable interpretation of the LAD equation, e.g. excluding particular
solutions, [8, 9, 10].

Application of continuum charge distributions instead of point charges.
This is the method of the classical papers of Lorentz, Abraham and
Dirac, too, [11, 12, 13, 8]. There are two main aspects of this
strategy:

One may improve the classical theory, with the identi�cation and
elimination of the mathematical problems, [14, 15],
One may modify the point charge model with the help of quantum
mechanics, or with various renormalization procedures,
[16, 17, 18, 19, 20, 21].

2 / 9



Related issues

The recent experiments of radiation reaction related phenomena, see,
e.g. [22, 23, 24], open the way toward the veri�cation of the
mentioned theories.

There are less rigorous, but more applicable (?) approaches,
[25, 26, 27].
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