A review of our last article

- C.Bild–D.A. Deckert–H.Ruhl. Phys. Rev. D, 99 (2019)
- Dirac's derivation of LAD equation: unjustified Gauss-Stokes theorem, Taylor expansion, limit to a point
- ▶ rigid spherical shell, radious e, uniform continuous charge distribution; world tube
- Basic assumption: the electromagnetic fields outside the world tube of the shell and the point charge at the centre are equal.
- Equation with time delay ϵ .

Problems

1. the world tube breaks down for accelerations higher than $\frac{1}{\epsilon}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. the basic assumption is not valid

Invalidity is proved by Distribution Theory.

Spacetime formulae

T. Matolcsi: *Spacetime without Reference Frames*, Minkowski Institute Press, 2020

- ► Spacetime points *x*, *y*... spacetime vectors *x*, *y*,...
- If x, y are spacetime points then x y is a spacetime vector

- $\blacktriangleright \mathbf{x} \cdot \mathbf{y} \sim x_k y^k, \quad \mathbf{L} \cdot \mathbf{x} \sim L^{ik} x_k, \qquad \mathbf{x} \otimes \mathbf{y} \sim x^i y^k$
- absolute velocity $oldsymbol{u}$, $oldsymbol{u}\cdotoldsymbol{u}=-1$,
- Spacetime differentiation $\mathrm{D} \sim \partial_k$, $\mathrm{D} \cdot \mathbf{T} \sim \partial_k T^{ik}$

Distributions in spacetime

The electromagnetic quantites are considered Distributions

Pole taming (Gelfand)

- $\blacktriangleright \ \rho({\boldsymbol{q}}) := |{\boldsymbol{q}}| \ ({\boldsymbol{q}} \in {\boldsymbol{\mathsf{S}}})$
- $\frac{1}{\rho^{2+m}}$ is not locally integrable if *m* is a positive integer

•
$$\left(\operatorname{tm}\frac{1}{\rho^{2+m}} \mid \psi\right) := \int \frac{\psi(q) - \mathcal{T}_{\psi}^{(m-1)}(q)}{|q|^{2+m}} dq$$

• $\mathcal{T}_{\psi}^{(m-1)}$ is

– on the support of $\psi :$ the Taylor polynomial of order (m-1) at zero of ψ

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

– outside the support of ψ : zero

Electrostatics

An important notion

- Charge distributions extraneous to each other: disjoint supports
- Electric field extraneous to a charge distribution: its producing charge distribution is extraneous to the one in question

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Electrostatic energies (by Jackson)

- Point charge e at space point q_e, extraneous potential V, extraneous electric energy: eV(q_e); charge density ρ, extraneous potential, extraneous electric energy density: ρV
- Point charges, self-energy: the work done by transporting e₁..., e_n from the infinity to their places q₁,..., q_n
- ▶ 1. step: no work for the first charge, the self-energy is zero

► 2. step:
$$\frac{1}{4\pi} \frac{e_1 e_2}{4\pi |q_2 - q_1|} = \frac{1}{2} (e_1 V_2(q_1) + e_2 V_1(q_2))$$

n. step:

$$\frac{1}{2}\sum_{k\neq i=1}^{n}\frac{e_{k}e_{i}}{4\pi|q_{k}-q_{i}|}=\frac{1}{2}\sum_{k=1}^{n}(e_{k}(V-V_{k})(q_{k}))$$

► More and more particles with smaller and smaller charges together → continuous charge distribution

Without a serious objection, $\frac{1}{2}\rho V$ can be accepted as the selfenergy density of a charge density ρ in its own potential V

人口 医水管 医水管 医水管 医

Electrostatic energies (by Jackson)

$$\rho V = (\operatorname{div} E)V = \operatorname{div}(EV) - E \cdot \operatorname{grad} V = = \operatorname{div}(EV) + |E|^2 \quad (\operatorname{div} E = \rho)$$

The total self-energy (Gauss theorem)

$$\frac{1}{2}\int\rho V = \frac{1}{2}\int|\boldsymbol{E}|^2$$

• 'Electric self-energy density' = $\frac{1}{2}|\boldsymbol{E}|^2$

► For a point charge: the electric self-energy is infinite

Comments

ho V is zero where ho is zero but $|E|^2$ is not zero there

It is unjustified to consider $\frac{1}{2}|\mathbf{E}|^2$ the self-energy density of a static electric field \mathbf{E} . It has the only physical meaning that its integral over all the space is the total self-energy

Amazing and shocking:

first step "the electric self-energy of a point charge is zero" conclusion "the electric self-energy of a point charge is infinite"

Electric self-energy of a point charge

- The infinite self-electric energy: three times incorrect reasoning:

 - 1. $\frac{1}{2}\rho V$ does not make sense for a point charge 2. $\frac{1}{2}|E|^2$ is not the self-energy density even in the continuous case
 - 3. Gauss theorem is not applicable
- $\frac{1}{2}|E|^2$ is not locally integrable
- $\frac{1}{2}|E|^2$ has a pole at the space point where the charge is
- $\frac{1}{2}$ tm $|E|^2$, mathematical construction; it could have the only physical meaning: its 'integral' is the self-energy of the point charge
- $\blacktriangleright \frac{1}{2}$ tm $|E|^2$ does have this physical meaning: the self-energy is zero:

$$\left(\frac{1}{2}\mathrm{tm}|\boldsymbol{E}|^2 \mid 1\right) = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Electrostatic forces

- Point charge e at space point q_e, extraneous electric field E, extraneous force: eE(q_e); charge density ρ, extraneous electric field E, extraneous force density: ρE
- A point charge does not act on itself: its self-force is zero
- Point charges, self-force: $\sum_{k=1}^{n} e_k (E E_k)(q_k)$
- ► More and particles with smaller and smaller charges together → continuous charge distribution

Without a serious objection, ρE can be accepted as the self-force density of the charge density ρ in its own electric field E

 $\begin{array}{l} \bullet \quad \text{`Electrostatical stress tensor' } \mathbf{P} := -\mathbf{E} \otimes \mathbf{E} + \frac{1}{2} |\mathbf{E}|^2 \mathbf{1}_{\mathsf{S}} \\ -\text{div} \mathbf{P} = \rho \mathbf{E} \quad \quad (\text{div} \mathbf{E} = \rho, \ \mathbf{E} \text{ is produced by } \rho) \end{array} \end{array}$

Comment

 $\rho \pmb{E}$ is zero where ρ is zero but \pmb{P} is not zero there:

It is unjustified to consider P a real stress tensor of a static electric field. It has the only physical meaning that its negative divergence is the self-force density

Electrostatic self-force of a point charge

- ► The fictitious stress tensor $P := -E \otimes E + \frac{1}{2} |E|^2 \mathbf{1}_{\mathsf{S}}$ is not locally integrable
- ▶ P has a pole at the space point where the charge is
- tmP, mathematical construction; it could have the only physical meaning: its negative divergence is the self-force of the point charge
- tmP does have this physical meaning: the self-force is zero:

 $-\operatorname{div}(\operatorname{tm} \boldsymbol{P}) = 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Beyond statics

- Point charge e, velocity v, extraneous electric and magnetic field E and B, extraneous force: e(E + v × B)
- Charge density ρ, velocity field v, extraneous electric and magnetic fields, extraneous force density: ρ(E + v × B)
- A non-inertial point charge acts on itself, self-force: f_s
- Point charges, self-force:

$$\sum_{k=1}^{n} e_k((\boldsymbol{E}-\boldsymbol{E}_k)+\mathbf{v}_k imes(\boldsymbol{B}-\boldsymbol{B}_k))+\sum_{k=1}^{n} f_{s,k}$$

► More and more particles with smaller and smaller charges together → continuous charge distribution:

$$\rho(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) + ?$$

 $? \neq 0$ most probably

Contrary to electrostatics, it is questionable and even more than questionable that $\rho(\mathbf{E} + \mathbf{v} \times \mathbf{B}) = \rho \mathbf{E} + \mathbf{i} \times \mathbf{B}$ is the self-force density of ρ in its own fields \mathbf{E} and \mathbf{B}

Spacetime formulation; continuous case

- Absolute current density $\boldsymbol{j} \sim (\rho, \boldsymbol{i})$
- Electromagnetic field $m{F} \sim (m{E},m{B})$
- $F \cdot j \sim (\rho E, \rho E + i \times B)$; extraneous absolute force density

It is more than questionable that $F \cdot j$ is the absolute force density of j in its own field F

- 'Energy-momentum tensor' $m{T}:=-m{F}\cdotm{F}-rac{1}{4}({
 m Tr}m{F}\cdotm{F})m{1}$
- ▶ The time-time component of T is $\frac{1}{2}(|E|^2 + |B|^2)$
- ▶ The space-space component of T is $-E \otimes E + \frac{1}{2}|E|^2 \mathbf{1}_{\mathsf{S}} + \dots$

It is unjustified to consider \boldsymbol{T} a real energy-momentum tensor

▶ $-D \cdot T = F \cdot j$ ($D \cdot F = j$, F is produced by j)

It is more than questionable that ${\bf T}$ has the physical meaning that its negative spacetime divergence is the absolute self-force density

Spacetime formulation; point charge

- Existence of a point particle in spacetime: world line (one dimensional submanifold)
- ▶ World line function r, world line $\operatorname{Ran} r$, Lebesgue measure $\lambda_{\operatorname{Ran} r}$
- ► A point charge e, world line function r, spacetime current: erλ_{Ranr}
- ► Given r, retarded proper time: s_r(x), x − r(s_r(x)) is future-lightlike
- A point charge e, given r, produced electromagnetic potential (Liénard–Wiechert)

$$x\mapsto rac{e}{4\pi}rac{\dot{r}(s_r(x))}{-\dot{r}(s_r(x))\cdot(x-r(s_r(x)))}$$

- Electromagnetic field F[r] is some functional of the given r
- ► Fictitious energy-momentum tensor $T[r] := -F[r] \cdot F[r] - \frac{1}{4} (\operatorname{Tr} F[r] \cdot F[r]) \mathbf{1}$ is some functional of the **given** r

Spacetime formulation; point charge

- T[r] is not locally integrable
- T[r] is not differentiable on the world line
- Nevertheless, T[r] can be expounded, in a convenient sense, in powers of the 'radial distance' from the world line
- ▶ T[r] has a pole in 'radial distance' on the world line
- tmT[r], mathematical construction; it could have the only physical meaning: its negative spacetime divergence is the self-force of the point charge but even this meaning is questionable
- It is proved that

$$-\mathrm{D}\cdot\mathrm{tm}\,\boldsymbol{T}[r] = \frac{1}{4\pi}\frac{2e^2}{3}(\dot{r}\wedge\ddot{r})\cdot\dot{r}\lambda_{\mathrm{Ranr}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

On the LAD equation

- We obtained the usual self-force for a given world line function
- It is unjustified to put this self-force in a Newtonian-like equation to obtain the LAD equation which would serve to determine the world line function
- Fundamental problem: both electrodynamics and mechanics in their known forms are theories of action:
 - the Maxwell equations define the electromagnetic field F produced by a **given** world line function r of a particle
 - the Newtonian equation defines the world line function r of a particle in a **given** force (e.g. the Lorentz force in an extraneous electromagnetic field F)
- ► At present we have not a well working theory of **interaction** which would define both *F* and *r* together

On the LAD equation

 Usual conception: the Newtonian equation for a point charge under the action of a given force *f*, is replaced with the balance equation

$$-\mathrm{D} \cdot (\boldsymbol{\mathcal{T}}_m[r] + \boldsymbol{\mathcal{T}}_e[\boldsymbol{F}]) + \boldsymbol{f}(r, \dot{r}) \lambda_{\mathrm{Ran}r} = \boldsymbol{0}$$

▶ It seems evident that ${\mathcal T}_m[r] = m\dot{r} \otimes \dot{r} \lambda_{{
m Ran}r}$ and then

$$m\ddot{r}\lambda_{\mathrm{Ran}r} = f(r,\dot{r})\lambda_{\mathrm{Ran}r} - \mathrm{D}\cdot \mathcal{T}_{e}[F]$$

$$\mathbf{D} \cdot \mathbf{F} = \dot{r} \lambda_{\text{Ran}r}, \qquad \mathbf{D} \wedge \mathbf{F} = \mathbf{0}$$

would describe that r and F determine each other mutually

- It is not sure that this is a good system of equations with a convenient \$\mathcal{T}_e[F]\$
- It is sure that T_e[F] cannot be replaced with tmT[r] obtained for a given r
- ► The LAD equation (*T_e*[*F*] replaced with tm *T*[*r*]) is a misconception; its pathological properties are not surprising

On the self-force

- To get the usual self-force, the unjustified use of Gauss-Stokes theorem, Taylor expansion, limit to a point are ruled out by pole taming
- The usual formula of the self-force can be possibly accepted only for a given spacetime existence of a point charge
- ▶ If the force f is necessary for bringing about a given r without radiation i.e. $m\ddot{r} = f(r,\dot{r})$ would valid then besides f, the force $-\frac{1}{4\pi}\frac{2e^2}{3}(\dot{r}\wedge\ddot{r})\cdot\dot{r}$, opposite to the self-force, must be applied for obtaining the desired r. An actual example is an elementary particle revolved in a cyclotron

Equation, equality

- Equation is a definition
- Equality is a statement
- LAD 'equation'? No: runaway solutions
- LAD 'equality'? No: see C.J.Eliezer, Mathematical Proceedings of the Cambridge Philosophical Society, Vol 39. Nr 3. 1943

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Sugárzási visszahatás

Budapest, 2020. november 6.

- Nonlocal modifications of the electromagnetic part, the Maxwell equations, [1, 2, 3].
- Dissipative modifications of the mechanical part, the Newton equation [4, 5, 6, 7].
- A suitable interpretation of the LAD equation, e.g. excluding particular solutions, [8, 9, 10].
- Application of continuum charge distributions instead of point charges. This is the method of the classical papers of Lorentz, Abraham and Dirac, too, [11, 12, 13, 8]. There are two main aspects of this strategy:
 - One may improve the classical theory, with the identification and elimination of the mathematical problems, [14, 15],
 - One may modify the point charge model with the help of quantum mechanics, or with various renormalization procedures, [16, 17, 18, 19, 20, 21].

- The recent experiments of radiation reaction related phenomena, see, e.g. [22, 23, 24], open the way toward the verification of the mentioned theories.
- There are less rigorous, but more applicable (?) approaches, [25, 26, 27].

 $\mathsf{M}. \ \mathsf{Born} \ \mathsf{and} \ \mathsf{L}. \ \mathsf{Infeld}.$

Foundations of the new field theory.

Proceedings of the Royal Society of London. Series A, 144(852):425–451, 1934.

F. Bopp.

Eine lineare theorie des elektrons.

Annalen der Physik, 430(5):345-384, 1940.

M. K.-H. Kiessling.

Force on a point charge source of the classical electromagnetic field. *Physical Review D*, 100(6):065012, 2019. arXiv:1907.11239v4, with erratum.

- - G.W. Ford and O'Connell.

Radiation reaction in electrodynamics and the elimination of runaway solutions.

Physics Letters A, 157(4-5):217-220, 1991.

White areas on the map of applying non-equilibrium thermodynamics: on the self accelerating electron.

Atti dell'Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, Suppl. I., 86:1–7, 2008.

J. Polonyi

Effective dynamics of a classical point charge. *Annals of Physics*, 342:239–263, 2014.

M. Formanek, A. Steinmetz, and J. Rafelski. Radiation reaction friction: I. Resistive material medium. arXiv:2004.09634, 2020.

P. A. M. Dirac.

Classical theory of radiating electrons.

Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 167(929):148–169, 1938.

H. Spohn.

The critical manifold of the Lorentz-Dirac equation.

EPL (Europhysics Letters), 50(3):287, 2000.

Matolcsi T., Fülöp T., and Weiner M.

Second order equation of motion for electromagnetic radiation back-reaction. *Journal of Modern Physics*, 32(27):1750147(18), 2017. arXiv:1207.0428.

Н.

H.A. Lorentz.

La théorie électromagnétique de Maxwell et son application aux corps mouvants.

Archives Neerlandaises des Sciences Exactes et Naturelles, 25:363-552, 1892.

Max Abraham.

Theorie der Elektrizität, Vol. II: Elektromagnetische Theorie der Strahlung. Teubner, Leipzig, 1905.

H.A. Lorentz.

The Theory of Electrons. Teubner, Leipzig, 1909.

S. Parrott.

Relativistic electrodynamics and differential geometry. Springer, 2012.

Radiation reaction in classical electrodynamics.

Physical Review D, 99(9):096001, 2019.

E. J. Moniz and D.H. Sharp.

Absence of runaways and divergent self-mass in nonrelativistic quantum electrodynamics.

Physical Review D, 10(4):1133, 1974.

E. J. Moniz and D.H. Sharp.

Radiation reaction in nonrelativistic quantum electrodynamics.

Physical Review D, 15(10):2850, 1977.

C. R. Galley, A. K. Leibovich, and I. Z. Rothstein.

Finite size corrections to the radiation reaction force in classical electrodynamics.

Physical review letters, 105(9):094802, 2010.

P. Forgács, T. Herpay, and P. Kovács.

Comment on "Finite Size Corrections to the Radiation Reaction Force in Classical Electrodynamics".

Physical review letters, 109(2):029501, 2012.

C. R. Galley, A.K. Leibovich, and I.Z. Rothstein. Galley, leibovich, and rothstein reply. *Physical Review Letters*, 109(2):029502, 2012.

J. Polonyi.

The Abraham–Lorentz force and electrodynamics at the classical electron radius.

International Journal of Modern Physics A, 34(15):1950077, 2019.

T.N. Wistisen, A. Di Piazza, H. V. Knudsen, and U. I. Uggerhoj.
Experimental evidence of quantum radiation reaction in aligned crystals.
Nature communications, 9(1):1-6, 2018.

K. Poder, M. Tamburini, G. Sarri, A. Di Piazza, S. Kuschel, C.D. Baird, K. Behm, S. Bohlen, J.M. Cole, D.J. Corvan, and +other 14 authors. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Physical Review X, 8(3):031004, 2018.

T.G. Blackburn.

Radiation reaction in electron-beam interactions with high-intensity lasers. Reviews of Modern Plasma Physics, 4(1):1-37, 2020.

🔋 L. D. Landau and E. M. Lifshitz.

The Classical Theory of Fields (Course of Theoretical Physics, vol. 2). Pergamon Press, Oxford, 2th edition, 1959.

I.V. Sokolov.

Renormalization of the Lorentz-Abraham-Dirac equation for radiation reaction force in classical electrodynamics.

Journal of Experimental and Theoretical Physics, 109(2):207–212, 2009.

D.B. Zot'ev.

Critical remarks on Sokolov's equation of the dynamics of a radiating electron.

Physics of Plasmas, 23(9):093302, 2016.