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Theoretical research and experiments suggest that the brain operates at or
near a critical state between sustained activity and an inactive phase,
exhibiting optimal computational properties (see:

Individual neurons emit periodic signals:
(Y. Penn et al PNAS 113 (2016) 3341)

— (Criticality at the synchronization transition point ?




Kuramoto oscillator model (1975)
on a large human connectome
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R(t - o) >0 for K>K, R(t - «)=0 for K< K, as R o (1/N)¥2
Exhibits an initial growth; ~ B(t,N) = N""2t7f1(t/N*) from incoherent initial states

The KKI-18 is a structural graph of N ~ 8 x 10° nodes and ~ 4 x 10" power-law distributed
weighted links see : Michael T. Gastner and Géza Odor, Scientific Reports 6 (2016) 27249

Dynamical scaling and frustrated synchronization sub-critically, see:

Géza Odor and Jeffrey Kelling :
Critical synchronization dynamics of the Kuramoto model on connectome and small world graphs
Scientific Reports 9 (2019) 19621



Determination of the characteristic time
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The effect of additive stochastic noise

Brain experiments: @; > 0, distributions are narrow: o ;~ 0.02
and have mean value: <@ .> ~ 0.05

<® ;> #0 can be gauged out by a rotating coordinate system
Rescalingof w; as: w, - aw,' t — (1/a()t' K — aK'

Existing results can be transformed for later times and weaker
couplings, thanks to Galilean invariace of the Kuramoto eq.

Gaussian distributed annealed noise is added:
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Kuramoto equation solution on connectome
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m sparse, random graph

m requires explicit storage network topology
|.e. sparse representation, neighbor lists
m random neighbor sums

— techniques for SIMT vectorization by tuned operation and
memory ordering
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Implementation

B boost: :numeric: :odeint odeint.com

m template library of ODE solvers
B boost::numeric supports various vector backends for accelerators:
e.g. Thust (CUDA), VexCL (CUDA/OpenCL)

m VexCL

m library for offloading vector expressions via CUDA or OpenCL
m direct support for custom kernels

m we use 4th order Runge-Kutta form odeint
— computing derivates reamins and is the most time-consuming part



Efficiency
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m profile on tesla P100

m global load efficiency: ~ 47 %
saturating gross load bandwidth to ~ 70 %
m data requests dominant stall reason ~ 50 %

— remains memory-latency bound, due to random accesses to
neighbors

m efficient inmplementation for integration on random graphs
~ 20x improved throughput over single CPU socket.

m easily adaptable to other models: we use it for 2nd order
Kuramoto, too



Summary

Jeffrey Kelling implemented Kruramoto ODE solver running efficiently on GPU-
even in case of sparse random graphs

My experience on Marenostrum-4 BSC Barcelona Configuration:

2 x IBM Power9 8335-GTH @ 2.4GHz éB.OGHZ on turbo, 20 cores and 4
threads/core, total 160 threads per node)

4 x GPU NVIDIA V100 (Volta) with 16GB HBM?2
Abut a speedup of factor x100 with respect 3GHz CPU-s

Allowed showing lack of effects of weak thermal fluctuations in 2 weeks.

Support from HPC-Europa3 programme and OTKA is acknowledged
Publication in J. Neuroscience is scheduled, a texnical paper to be written
Continuation to study on exact fruit-fly connectome is founded
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