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Objective

— Investigation of binary stars is one of the focus areas of astronomy

— New instruments, new observations: Kepler space telescope,
neutron star merge observations by gravitational wave detectors

— Understanding the inner structure and composition of stars is an
important step in establishing the star evolution steps and
dynamics

— The gravitational field of the accompanying start significantly
influences the inner structure and shape of the star and hence the
dynamic behavior of them

— Solving these models can be highly computationally intensive and
hence the increase in computation power GPUs offer are of great
help



Topics covered in the presentation

" Development of the polytropic start model

" Considering the external gravitational field and fixed
rotation

" Usage of the model
— Validation of the model (physical parameters, Roche
limit)
— Description of close binaries (change of star mass,
distance between the stars)

" Creating Python, C versions of the model and
implementing it on a GPU platform (NVIDIA GPU, CUDA )



Review of the star model
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Polytropic star model

" Polytropic model:  pV™ = const
— |zochor (n= o), izobar, (n=0), izoterm (n=1), adiabatic
(n=c,/c,)
— Simple relationship between the pressure, volume

and density

1
p = KpY,where y =1 +£

— n = 3 gives good approximation for the Sun
" Emden solution

—For n =0, 1, 5 analytic solution exists



Technical description of the GPU model

= Python code was developed to verify the model

" Porting to GPU was needed to enable faster computation and create a
platform that can support computations in a non-spherical symmetry
model

= Code separation:

— CPU: Simulation setup, CUDA installation, storage allocation and
management, task sequencing (based on resolution selected), step by
step initialization, error checking

— GPU: multiple threads according to the resolution selected. Highly
repetitive tasks like root finding algorithms (multiple algorithms were
tested), calculating the effect of external gravity and centrifugal force
for each point in the star



Validation for the Sun

" Central boundary conditions (center of
the star)

— Pressure p. = 1.25 10 Pa
— Density p,. = 76.500 kg/m?3

— Temperature = 15 million K

Zero boundary condition (star surface))

— Pressure = 10% Pa

No external gravity

—_—

Good match with Emden solution

For N=3 the star mass is the same for
all p,.

The model was highly insensitive for
zero boundary condition between 10*
and 101°Pa, causing only 1% change in
mass

M / Mstar log Density [kg/m3]

log P [Pa]

— 701

—

o
=

Density along star radius

S I S ——
3
2
1
0
-1
-2 -+ s T
00 02 04 06 08 10
R / Rstar
5 Star mass along star radius
101
081
061
041
024
00
0.0 02 04 06 08 10
R / Rstar
Pressure along star radius
18
b
e ——
14 —
2 T e—
10 \
8
6
00 02 04 06 08 10
R / Rstar
. Temperature along star radius
754
.
e
65 4 ———
601
551
504
45 T T
00 02 04 06 08 10
R / Rstar



Model verification through Roche
radius calculation
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Results: Effect of the gravitational field
(1/2)

Boundary conditions: parameters of the Sun

Accompanying star: 1 Sun Mass, Distance: 2.7 Sun
radius
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Results: Effect of the gravitational field
(2/2)

Boundary conditions: parameters of the Sun

Accompanying star: 1 Sun Mass, Distance: 2.7 Sun

radius
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Results: Fixed mass second star wit
changing distanc
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Results: Changing mass of second star
with fixed distance & -
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Learnings from the GPU implementation

= While the advantages can be great, certain challenges need to be
overcome

— Environment setup was not straightforward, multiple settings were
needed to figure out for Microsoft Visual C++ environment

— CUDA kernel execution time limit on Windows (2 second) can be
limitation for any physics simulation — help from stackoverflow.com
comes handy

= GPU’s significant advantage can only be captured if:
— There is careful consideration of task separation between CPU and GPU
— Amount of memory copy is limited (ideally only done once at the end)

— Sufficient number of threads are initiated (higher resolution >30) — for
lower resolution (~20 parallel threads) a CPU based code was faster
than the code utilizing GPU



Summary

* A model was created to
— Simulation a polytropic star model for binary stars

— Taking into account the gravity field of the accompanying
star and the centrifugal force from the rotation

— Verification of the model completed successfully

" First results showed the deformation, pressure and density
distribution in the binary stars with varying masses and
distances

" Learnings from the GPU implementation are applied in a
continued research into the internal structure and
composition of neutron stars



