QUBO from a practical Operations Research perspective

Mátyás Koniorczyk

Wigner Research Centre, Hungarian Academy of Sciences, Budapest GPU days 2019.

2019. 11. 22

https://wigner.mta.hu/~koniorczykmatyas/qubo

Motivated by a joint work with KRZYSZTOF DOMINO, Research Inst. for Applied Informatics, Polish Academy of Sciences Partially supported by NFKIH K124631 and K124351

Brief summary and motivation

Our goal is to

- get a picture of problems adiabatic quantum computers can address
- via particular examples
- actually solving some of them in an existing software framework.

(You need: a 64 bit Intel/AMD computer with Python \geq 3.3, and Internet access)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We adopt a view incorporating aspects of

- operations research and
- software engineering.

QUBO

$$\begin{array}{ll} \text{min.} & y = \mathbf{x}^T Q \mathbf{x} \\ \text{s.t.} & Q \in \{0, 1\} \end{array}$$

In general

$$y = \mathbf{x}^T Q' \mathbf{x} + \mathbf{b}^T \mathbf{x} + c,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

but $x_k^2 = x_k$, so $Q := Q' + \text{diag}(\mathbf{b})$ covers this.

- Symmetric form: $Q \rightarrow (Q + Q^T)/2$
- Upper triangular (if you like): $Q \rightarrow (Q + Q^{T})$, then zero out the lower triangle.

What's that buzz?

- Adiabatic quantum computers can solve QUBOs ¹.
- NP hard² and NP complete³ problems can be formulated as QUBOs.

BWOW! Everybody wants to get hold of one of these!

³NP and NP hard

¹Chimera graph, minor embedding, limited size

 $^{^2 \}rm Non-deterministic polynomial-time hardness: at least as hard as the hardest in NP, that is, decision problems where "yes" instances can be verified in in polynomial time.$

What's that buzz?

- Many instances of hard problems can be solved with efficient classical algorithms.
- Even if not exactly, there are many good approximations and heuristics.
 - (column generation, branch and bound, tabu search and other metaheuristics...)

How should I convince experts to buy one?

Note: on the other hand, even polynomial-time problems can be huge.

Example 1: Max cut

Problem

Given a graph G(V, E) split V into two so that the no. of edges between the parts is maximal.

- NP-complete
- APX-hard: no polynomial-time approximation scheme (PTAS), arbitrarily close to the optimal solution unless P = NP.
- Applications: physics: Ising model, engineering: VLSI circuit design

Example 1: Max Cut, QUBO

∀j ∈ V, x_j = 0 if in one part, x_j = 1 if in the other.
x_i + x_j - 2x_ix_j = 1 iff (i, j) ∈ E is in the cut.
So we have
min ∑ 2x_ix_i - x_i - x_i

$$\min\sum_{(i,j)\in E} 2x_i x_j - x_i - x_j$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example 1: Max Cut with Ocean Toolkit

Ocean Toolkit:

https://ocean.dwavesys.com

This talk:

https://wigner.mta.hu/~koniorczykmatyas/qubo

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Example 1: Max Cut with Ocean Toolkit

Lessons to learn

- PRO: It is easy to call a QUBO solver in Python.
- CON: This problem was just an Ising model.
- CON: We had to put together the QUBO ourselves. This is not what OR modelers like...

Example 2: Minimum vertex cover

Problem statement

Given a graph G(V, E), c $C \subset V$ is a vertex cover if

 $(\forall e \in E) (\exists v \in C) \quad v \in e$

Here the minimum vertex cover has 2 vertices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Image by Fschwarzentruber,

https://commons.wikimedia.org/wiki/File:Couverture_de_sommets.svg, License: CC BY-SA 4.0

Example 2: Minimum vertex cover

Facts

- NP-hard (decision version: NP-complete)
- Equivalent to problems with real applications.
- Integer programming (IP) formulation exists

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example 2: Minimum vertex cover: 0-1 LP formulation

Variables

$$(\forall j \in V) \quad x_j \in \{0,1\}: 1 \text{ iff } k \in C$$

0-1 program

min.
$$y = \sum_{i \in V} x_i$$

s.t. $x_i + x_j \ge 1$ $(\forall (i, j) \in E)$
 $x_i \in \{0, 1\}$ $(\forall i \in V)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Suitable for CPLEX, glpk, and many more!

Remarks: About linear programming

- Non-integer: polyhedra, simplex, interior point
- Mixed integer: logic problems
- Relaxations, branch-and-bound
- Lot of effort in many solvers
 - Paid: CPLEX
 - Free: glpk, Coin-OR
 - C.f. https://en.wikipedia.org/wiki/List_of_optimization_software

Turning 0-1 programs into QUBOs

Penalties

Classical constraint	Equivalent penalty
$x + y \leq 1$	P(xy)
$x + y \ge 1$	P(1-x-y+2xy)
x + y = 1	P(1-x-y+2xy)
$x \leq y$	P(x-xy)
$x_1 + x_2 + x_3 \le 1$	$P(x_1x_2 + x_1x_3 + x_2x_3)$
x = y	P(x+y-2xy)

Table quoted from F. Glover et al., arXiv:1811.11538

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Penalties are common in OR to deal with soft constraints otherwise.

QUBO for min vertex cover

 $\begin{aligned} & \text{min.} \quad y \quad = \sum_{i \in V} x_i \\ & \text{s.t.} \quad x_i + x_j \quad \geq 1 \quad (\forall (i,j) \in E) \\ & x_i \quad \in \{0,1\} \quad (\forall i \in V) \end{aligned}$

Classical constraint	Equivalent penalty
$x + y \leq 1$	P(xy)
$x + y \ge 1$	P(1-x-y+2xy)
x + y = 1	P(1-x-y+2xy)
$x \leq y$	P(x - xy)
$x_1 + x_2 + x_3 \leq 1$	$P(x_1x_2 + x_1x_3 + x_2x_3)$
x = y	P(x+y-2xy)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

min.
$$y = \sum_{i \in V} x_i + P\left(\sum_{(i,j) \in E} (1 - x_i - x_j + x_i x_j)\right)$$

s.t. $x_i \in \{0,1\} \quad (\forall i \in V)$

Example 2: Minimum vertex cover: Ocean Toolkit

Let's do it.

code: 02_vertex_cover.py

Lessons to learn

We can do 0-1 LP-s: a tremendous number of problems can be attacked. Their list includes:

- Constraint programming,
- Scheduling problems,
- Set covering and partitioning problems,
- Max clique search in graphs, and many other graph problems,
- Bin packing,

and many more, with strong practical applications in

- Manufacturing,
- Transportation and logistics,
- Investment optimization,
- etc.

The question is, which are the *killer applications* in which such a system is worth its price.

Lessons to learn

- Ocean Toolkit adopts a smart approach: it accepts even Networkx graphs directly.
- Check out also the constraint programming examples (e.g. https://docs.ocean.dwavesys.com/en/latest/examples/scheduling.html).

All the details

(splitting into small parts, minor embedding, where the dog is buried from the research perspective) are hidden from the user.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

I want to try dWave

"Leap": free access provided.

```
https://www.dwavesys.com/take-leap
```

Real quantum, as opposed to Sinclair's 1984 "Quantum Leap":

image source: https://hu.wikipedia.org/wiki/Sinclair_QL

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Used and recommended literature

- A tutorial on formulating QUBOs: F. Glover *et al.*, arXiv:1811.11538 and references therein.
- Ocean documentation: https://docs.ocean.dwavesys.com/en/latest/index.html
- Further code examples: https://github.com/dwave-examples
- On model building and typical problems in OR: H. Paul Williams: Model building in mathematical programming, 5. ed. Wiley, 2013, ISBN: 978-1-118-50617-2
- Scheduling theory (partly my field; a huge zoo of hard problems): M.L. Pinedo: Scheduling. Theory, Algorithm, and Systems, Springer 2012. DOI: 10.1007/978-1-4614-2361-4