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Quantum computation and noise

Fault tolerant computation

I quantum algorithms assume pure input, unitary evolution,
require isolation

I errors: interaction with environment, imperfect gates[
1/2 1/2
1/2 1/2

]
superposition mixture

[
1/2 0

0 1/2

]
I classical = (very) noisy quantum
I to protect quantum states:

1. wrap logical state in error correcting code
2. repeatedly measure error and correct
3. add more layers as needed

 threshold theorem (Aharonov–Ben-Or, 1996)
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Topological quantum computation

(Kitaev, 1997)

Principles

I computation takes place in subspace where states are locally
indistinguishable

I local perturbations cannot induce transitions

I without computation: topological quantum memory

I computation by braiding quasiparticles

I source of errors: environment may create and move anyons,
possibly braiding with qubits

I ways to combat errors: increase distance, slow down
quasiparticles
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Is it practical?

Excerpt from a popular Science News article1:
Topological qubits

Pros

+ Greatly reduce errors.

Cons

− Existence not yet confirmed.

Company support: Microsoft, Bell Labs

1doi:10.1126/science.aal0442
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Particle exchange I

In 3-space

I most of quantum information/computation assumes tensor
product structure

I particles around us are of two kinds: bosons (e.g. photons,
gluons), fermions (e.g. electrons, protons, neutrons, quarks,
neutrinos)

I microscopic particles of same species indistinguishable –
exchange has no observable effect

I mathematically: wave function is in symmetric/antisymmetric
subspace of H⊗n
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Particle exchange II

In the plane – anyons

I more than one ways to exchange particles!

I state may change in different ways

I robust in large distance limit, only depends on homotopy class
of path
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Fusion and braiding I

Fusion

I set of particle types (or “charges”) C = {1, a, b, c , . . .}
I a and b “fuses” to

⊕
c

Nc
abc , fusion coefficients Nc

ab

I n anyons of type “a”: a⊗n =
⊕

c1,...,cn−1

Nc1
aaN

c2
ac1 . . .N

cn−1
acn−2cn−1

a

a
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time
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Fusion and braiding II

Braiding

I particle exchange acts unitarily on topological degrees of
freedom

I depends only on homotopy class

I precisely controlled gate errors

anyon types + fusion rules + braiding encoded in an algebraic
object: modular tensor category
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Example: Fibonacci anyons

Fusion rules

1⊗ 1 = 1

1⊗ τ = τ 1 “vacuum”

τ ⊗ 1 = τ τ non-trivial charge

τ ⊗ τ = 1⊕ τ

n anyons of total charge 1 (τ) have an (bn) topological degrees of
freedom: τ⊗n = an1⊕ bnτ

an+11⊕ bn+1τ = τ ⊗ τ⊗n = bn1⊕ (an + bn)τ

b1 = b2 = 1, bn+2 = bn + bn+1 Fibonacci sequence, a4 = 2
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Encoding logical qubits

Computational subspace

I initialization step: pair creations

I qubit represented by four Fibonacci anyons of total charge 1

I depending on pattern: |0〉 or |1〉

0

τ
0

τ

τ

τ

τ

=
0

τ
τ

τ

τ

τ

τ

=
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Fusion and braiding of Fibonacci anyons

Braiding

σ1 =

[
e−4πi/5 0

0 e3πi/5

]
σ2 = 1

φ

[
e4πi/5

√
φe−3πi/5√

φe−3πi/5 −1

]

Measurement

I fusing measures total charge of pair

I probabilistic outcome: 1 or τ
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Approximating gates with braids

Single qubit gates

I group generated by σ1, σ2 and overall phases dense in U(2)

I for given qubit gate U need to find good short approximation,
minimize ∥∥∥U − σe1i1 σe2i2 · · ·σeTiT ∥∥∥∞
where ej = ±1, ij ∈ {1, 2}

I accuracy ε requires O(log 1
ε ) transpositions

I longer braids lead to arbitrary precision

two-qubit gates similarly: braid strands belonging to different
qubits  universal gate set
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Single qubit gates

Example: Hadamard gate

I σ1, σ2 Fibonacci braiding matrices

σ−22 σ21σ
−2
2 σ−21 σ−22 σ−21 σ−42 σ−21 σ22σ

4
1σ

2
2σ
−4
1 σ−42 ∼ 1√

2

[
1 1
1 −1

]

I turns computational basis state to superposition with high
precision
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Digression: knot theory

Knots

I basic objects in low dimensional topology

(=at most 4)

I can be represented in plane by projecting along generic
direction and marking crossings

I fundamental problem: when do two knot diagrams represent
the same knot? (up to ambient isotopy)

I similar objects: links, braids, tangles

Knots and the Jones polynomial 15/17
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The Jones polynomial I

“Native” problem for topological quantum computers

I knot invariant associating with every link a univariate
polynomial

I can be approximated efficiently on quantum computer –
algorithm found in topological model1 (at roots of unity)

I approximation of Jones polynomial BQP-hard2

I “perhaps the most natural BQP-complete problem known
today”

1Aharonov–Jones–Landau, 2009
2Freedman–Larsen–Wang, 2002 and Aharonov–Arad, 2011
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The Jones polynomial II

Algorithm to compute magnitude at e2πi/5

1. create Fibonacci anyon pairs from vacuum

2. braid as indicated by knot diagram

3. fuse in pairs

probability of getting vacuum proportional to magnitude of Jones
polynomial at e2πi/5

Knots and the Jones polynomial 17/17



The Jones polynomial II

Algorithm to compute magnitude at e2πi/5

1. create Fibonacci anyon pairs from vacuum

2. braid as indicated by knot diagram

3. fuse in pairs

probability of getting vacuum proportional to magnitude of Jones
polynomial at e2πi/5

Knots and the Jones polynomial 17/17


	Overview
	Exotic particle statistics
	From circuits to anyons
	Knots and the Jones polynomial

