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Quadratic Unconstrained Binary Optimization

minimize/maximize f(x) = x" Qx

where x; € {0,1}



Quadratic Unconstrained Binary Optimization

» Wide range
» Quantum annealing

Quantum Bridge Analytics I: A Tutorial on

Formulating and Using QUBO Models

Fred Glover, Gary Kochenberger, Yu Du
November 2019, arXiv:1811.11538



Combinatorial Optimization

» Polynomial-time problems
» NP-hard problems

» Polynomial time for special cases
» Approximation algorithms

Problem-specific solution algorithms



Quadratic Unconstrained Binary Optimization

» general framework to formulate optimization problems
» QUBO solvers can efficiently solve important problems
P two-step process

1. re-cast the original model into QUBO form
2. solve with an appropriate QUBO solver

» using modern meta-heuristic methods help to find optimal
solutions in acceptable time



Known QUBO problems

VVvyVvVVVYyVYVYyVYVYYY

SAT Problems

Graph Coloring Problems

Maximum Cut Problems

Maximum Clique Problems

Number Partitioning Problems
Constraint Satisfaction Problems (CSPs)
Quadratic and Multiple Knapsack Problems
Capital Budgeting Problems

Warehouse Location Problems

Discrete Tomography Problems

etc.



General QUBO form

minimize/maximize f(x) = x” Qx

where x; € {0,1}

» symmetric Q
» upper-triangular Q



QUBO as an objective function

minimize/maximize f(x) = Z QijxiX;
isj

where x; € {0,1}



QUBO as an objective function

minimize/maximize f(x Z Qix; + Z QijxiX;
i#j

where x; € {0,1}

containing linear and quadratic terms



Z Qiixi + Z (Qy + Qii)xix;

i<j
Transformation

Vi) Q)= —(Q”';Qf")



Upper-triangular Q

Z Qiixi + Z (Qy + Qji)xix;

i<j
Transformation

o Qi+, i<y
Vij @iy '_{0, if i > )



Equivalence to Ising model

Configuration energy:

H(S) = — ZJ,JS,SJ — ’UZ h,'S,'

i<j i

where s; € {—1,1}

Conversion to QUBO:

s;i+1
Xj =
2



Number Partitioning Problem

Partition the set S = {vi, vz, ... v;,} of numbers into Sy and
Sy such that Y~ Sp and > S; are as close as possible.
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Number Partitioning Problem
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Number Partitioning Problem

Partition the set S = {vi, vz, ... v;,} of numbers into Sy and
Sy such that Y~ Sp and > S; are as close as possible.

ViES =X =]

m m m
E Vi Xi E Vv, — E Vi Xi
i=1 i=1 i=1

diff =

zm:v,-—2zm:v,-x,- =

i=1 i=1

m
c—2 E ViXi
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Number Partitioning Problem as QUBO

m 2
dI'FF2 = (C -2 Z V,'X,')
i=1



Number Partitioning Problem as QUBO

m 2
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Number Partitioning Problem as QUBO

m 2
diff? = (c -2 Z v,-x,-) =24+ 4xT Qx
Q

where Q; = vi(v; — ¢) and Q;; =



Number Partitioning Problem as QUBO

m 2
diff? = (c -2 Z vix; | = c®+4xTQx

where Q; = v;(v; — ¢) and Q; = Q;i = v;v;.

minimize x " Qx



Formulating constrained problems as QUBO

minimize y = f(x, x2)
subject to x; +x <1



Formulating constrained problems as QUBO

minimize y = f(x, x2)
subject to x; +x <1

minimize y = f(x1, x2) + Pxix2



Formulating constrained problems as QUBO

minimize y = f(x, x2)
subject to x; +x <1

minimize y = f(x1, x2) + Pxix2
» Penalty P is large enough constant
» Penalty P is not too large



Quadratic penalties

Classical Constraint

Equivalent Penalty

x+y<l1 P(xy)

x+y>1 P(1—x—y+xy)
x+y=1 P(1—x—y+2xy)
x<y

X1—|—X2—|—X3§1

X=Yy




Minimum Vertex Cover (MVC) Problem

» let G = (V, E) be an undirected graph
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Minimum Vertex Cover (MVC) Problem

» let G = (V, E) be an undirected graph
» V' is a vertex cover if: V' C V, such that:

weEE = ueV'vveV

» MVC: find a cover with a minimum number of vertices
» formulated as:
minimize »_ x;
jev

subject to Vuv € E : x, + x, > 1

where x, = 1 iff vertex v is in the cover



Minimum Vertex Cover (MVC) Problem

>

\4

the problem can be re-cast to QUBO by adding penalty
to the objective function

the penalty (as per the table) is P(1 — x — y + xy)

hence the unconstrained version of the problem is:

minimize ZXJ +P Z (1 —x — x; + xix;)
Jjev (ij)eE
which can be written as minimize x” Qx + C, where C is
constant term

since C has no impact in the optimization, it can be
dropped, leaving us with the QUBO form



Summary

Many optimization problems can be turned to QUBO
Quadratic penalties

Uniform solution with successful meta-heuristics
Applications in Machine Learning

Equivalence to Ising model

Quantum annealing

vVvyvyvVvyvyyYyy

Hybrid solvers



Set partitioning problem (SPP)

> partition a set of items into subsets so that:

» cach item appears in exactly one subset and
» the cost of the subsets chosen is minimized

» appears in many settings including the airline and other
industries
» traditionally formulated in binary variables:

n
minimize 231 Ci X
J:

subject to: Vi € [1.m] : >~ ajx; =1
j=1



Set partitioning problem (SPP)

» an SPP can be re-cast into QUBO problem by adding the
quadratic penalties:

PY (D ap—b)

ij=
» where the outer sum is taken over all original constrains

» expanding the sums and dropping the additive constant
from the objective function will give the form:

minimize x" Qx, x € {0, 1}



Unsupervised Machine Learning

» clustering can be represented as set partitioning problem
solvable by QUBO

» clique partitioning problem offers a general model for
correlation clustering modularity maximization

» application of QUBO based quantum computers are also
a filed of study



Supervised Machine Learning

» the Ising model is useful for any representation of neural
function

» QUBO based processing units could be used with
convolutional neural networks and constraint satisfaction
problems



ML to Improve QUBO Solution Processes

» mainly pre-processing techniques

» identify relationships such as values (or bounds) that can
be assigned to variables

» identify inequalities that can constrain feasible spaces
more tightly

» up to 45% reduction in problem size is possible



