

EFOP-3.6.2-16-2017-00013

European Union

Quadratic Unconstrained Binary Optimization

Zsolt Tabi, Tamás Kozsik

Eötvös Loránd University (ELTE) Budapest, Hungary

2019.

European Union European Social

< ロ > < 同 > < 回 > < 回 >

INVESTING IN YOUR FUTURE

Quadratic Unconstrained Binary Optimization

minimize/maximize $f(x) = x^T Q x$

where $x_i \in \{0, 1\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Quadratic Unconstrained Binary Optimization

Wide range

Quantum annealing

Quantum Bridge Analytics I: A Tutorial on Formulating and Using QUBO Models Fred Glover, Gary Kochenberger, Yu Du November 2019, arXiv:1811.11538

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Combinatorial Optimization

Polynomial-time problems

- NP-hard problems
 - Polynomial time for special cases
 - Approximation algorithms

Problem-specific solution algorithms

Quadratic Unconstrained Binary Optimization

- general framework to formulate optimization problems
- QUBO solvers can efficiently solve important problems
- two-step process
 - 1. re-cast the original model into QUBO form
 - 2. solve with an appropriate QUBO solver
- using modern meta-heuristic methods help to find optimal solutions in acceptable time

Known QUBO problems

- SAT Problems
- Graph Coloring Problems
- Maximum Cut Problems
- Maximum Clique Problems
- Number Partitioning Problems
- Constraint Satisfaction Problems (CSPs)
- Quadratic and Multiple Knapsack Problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Capital Budgeting Problems
- Warehouse Location Problems
- Discrete Tomography Problems
- etc.

General QUBO form

minimize/maximize
$$f(x) = x^T Q x$$

where $x_i \in \{0, 1\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- ► symmetric Q
- upper-triangular Q

QUBO as an objective function

minimize/maximize
$$f(x) = \sum_{i,j} Q_{ij} x_i x_j$$

where $x_i \in \{0,1\}$

QUBO as an objective function

minimize/maximize
$$f(x) = \sum_{i} Q_{ii}x_i + \sum_{i \neq j} Q_{ij}x_ix_j$$

where $x_i \in \{0, 1\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

containing linear and quadratic terms

Symmetric Q

$$\sum_i Q_{ii} x_i + \sum_{i < j} (Q_{ij} + Q_{ji}) x_i x_j$$

Transformation

$$orall i
eq j: Q_{ij}' := rac{(Q_{ij} + Q_{ji})}{2}$$

Upper-triangular Q

$$\sum_i Q_{ii}x_i + \sum_{i < j} (Q_{ij} + Q_{ji})x_ix_j$$

Transformation

$$\forall i, j: Q'_{i,j} := \begin{cases} Q_{i,j} + Q_{j,i}, & \text{if } i < j \\ 0, & \text{if } i > j \end{cases}$$

Equivalence to Ising model

Configuration energy:

$$egin{aligned} \mathcal{H}(s) &= -\sum_{i < j} \mathcal{J}_{ij} s_i s_j - \mu \sum_i h_i s_i \ \end{aligned}$$
 where $s_i \in \{-1, 1\}$

Conversion to QUBO:

$$x_i := \frac{s_i + 1}{2}$$

Partition the set $S = \{v_1, v_2, \dots, v_m\}$ of numbers into S_0 and S_1 such that $\sum S_0$ and $\sum S_1$ are as close as possible.

Partition the set $S = \{v_1, v_2, \dots, v_m\}$ of numbers into S_0 and S_1 such that $\sum S_0$ and $\sum S_1$ are as close as possible.

$$v_i \in S_j \Rightarrow x_i = j$$

Partition the set $S = \{v_1, v_2, \dots, v_m\}$ of numbers into S_0 and S_1 such that $\sum S_0$ and $\sum S_1$ are as close as possible.

$$v_i \in S_j \Rightarrow x_i = j$$

$$\sum_{i=1}^m v_i x_i$$

Partition the set $S = \{v_1, v_2, \dots, v_m\}$ of numbers into S_0 and S_1 such that $\sum S_0$ and $\sum S_1$ are as close as possible.

$$v_i \in S_j \Rightarrow x_i = j$$

Partition the set $S = \{v_1, v_2, \dots, v_m\}$ of numbers into S_0 and S_1 such that $\sum S_0$ and $\sum S_1$ are as close as possible.

$$v_i \in S_j \Rightarrow x_i = j$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\mathsf{diff} = \left| \sum_{i=1}^m v_i - 2 \sum_{i=1}^m v_i x_i \right|$$

Partition the set $S = \{v_1, v_2, \dots, v_m\}$ of numbers into S_0 and S_1 such that $\sum S_0$ and $\sum S_1$ are as close as possible.

$$v_i \in S_j \Rightarrow x_i = j$$

diff =
$$\left|\sum_{i=1}^{m} v_i - 2\sum_{i=1}^{m} v_i x_i\right| = \left|c - 2\sum_{i=1}^{m} v_i x_i\right|$$

$$\mathsf{diff}^2 = \left(c - 2\sum_{i=1}^m v_i x_i\right)^2$$

(ロ)、(型)、(E)、(E)、 E) のQ()

$$\operatorname{diff}^{2} = \left(c - 2\sum_{i=1}^{m} v_{i}x_{i}\right)^{2} = c^{2} + 4x^{T}Qx$$

(ロ)、(型)、(E)、(E)、 E) のQ()

$$diff^{2} = \left(c - 2\sum_{i=1}^{m} v_{i}x_{i}\right)^{2} = c^{2} + 4x^{T}Qx$$

where $Q_{ii} = v_{i}(v_{i} - c)$ and $Q_{ij} = Q_{ji} = v_{i}v_{j}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

$$diff^{2} = \left(c - 2\sum_{i=1}^{m} v_{i}x_{i}\right)^{2} = c^{2} + 4x^{T}Qx$$

where $Q_{ii} = v_{i}(v_{i} - c)$ and $Q_{ij} = Q_{ji} = v_{i}v_{j}$.

minimize $x^T Q x$

(ロ)、(型)、(E)、(E)、 E) のQ()

Formulating constrained problems as QUBO

minimize $y = f(x_1, x_2)$ subject to $x_1 + x_2 \le 1$

Formulating constrained problems as QUBO

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

minimize
$$y = f(x_1, x_2)$$

subject to $x_1 + x_2 \le 1$

minimize
$$y = f(x_1, x_2) + Px_1x_2$$

Formulating constrained problems as QUBO

minimize
$$y = f(x_1, x_2)$$

subject to $x_1 + x_2 \le 1$

minimize $y = f(x_1, x_2) + Px_1x_2$

Penalty P is large enough constant

Penalty P is not too large

Quadratic penalties

Classical Constraint	Equivalent Penalty
$x + y \le 1$	P(xy)
$x + y \ge 1$	P(1-x-y+xy)
x + y = 1	P(1-x-y+2xy)
$x \leq y$	P(x - xy)
$x_1 + x_2 + x_3 \le 1$	$P(x_1x_2 + x_1x_3 + x_2x_3)$
x = y	P(x+y-2xy)

• let
$$G = (V, E)$$
 be an undirected graph

• let
$$G = (V, E)$$
 be an undirected graph

• V' is a vertex cover if: $V' \subseteq V$, such that:

$$uv \in E \implies u \in V' \lor v \in V'$$

• let
$$G = (V, E)$$
 be an undirected graph

▶
$$V'$$
 is a vertex cover if: $V' \subseteq V$, such that:

$$uv \in E \implies u \in V' \lor v \in V'$$

MVC: find a cover with a minimum number of vertices

• let
$$G = (V, E)$$
 be an undirected graph

▶
$$V'$$
 is a vertex cover if: $V' \subseteq V$, such that:

$$uv \in E \implies u \in V' \lor v \in V'$$

MVC: find a cover with a minimum number of verticesformulated as:

minimize
$$\sum_{j \in V} x_j$$

subject to
$$\forall uv \in E : x_u + x_v \geq 1$$

where $x_v = 1$ iff vertex v is in the cover

(ロ)、

- the problem can be re-cast to QUBO by adding penalty to the objective function
- the penalty (as per the table) is P(1 x y + xy)
- hence the unconstrained version of the problem is:

minimize
$$\sum_{j \in V} x_j + P \sum_{(i,j) \in E} (1 - x_i - x_j + x_i x_j)$$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

- which can be written as minimize $x^T Q x + C$, where C is constant term
- since C has no impact in the optimization, it can be dropped, leaving us with the QUBO form

Summary

Many optimization problems can be turned to QUBO

- Quadratic penalties
- Uniform solution with successful meta-heuristics
- Applications in Machine Learning
- Equivalence to Ising model
- Quantum annealing
- Hybrid solvers

Set partitioning problem (SPP)

partition a set of items into subsets so that:

- each item appears in exactly one subset and
- the cost of the subsets chosen is minimized
- appears in many settings including the airline and other industries
- traditionally formulated in binary variables:

minimize
$$\sum_{j=1}^{n} c_j x_j$$

subject to:
$$orall i \in [1..m]$$
 : $\sum\limits_{j=1}^n a_{ij} x_j = 1$

Set partitioning problem (SPP)

an SPP can be re-cast into QUBO problem by adding the quadratic penalties:

$$P\sum_{i}(\sum_{j=1}^{n}a_{ij}x_j-b_i)^2$$

where the outer sum is taken over all original constrains

expanding the sums and dropping the additive constant from the objective function will give the form:

minimize
$$x^T Q x$$
, $x \in \{0, 1\}$

Unsupervised Machine Learning

- clustering can be represented as set partitioning problem solvable by QUBO
- clique partitioning problem offers a general model for correlation clustering modularity maximization
- application of QUBO based quantum computers are also a filed of study

Supervised Machine Learning

- the Ising model is useful for any representation of neural function
- QUBO based processing units could be used with convolutional neural networks and constraint satisfaction problems

ML to Improve QUBO Solution Processes

- mainly pre-processing techniques
- identify relationships such as values (or bounds) that can be assigned to variables

- identify inequalities that can constrain feasible spaces more tightly
- ▶ up to 45% reduction in problem size is possible