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Quadratic Unconstrained Binary Optimization

minimize/maximize f (x) = xTQx

where xi ∈ {0, 1}



Quadratic Unconstrained Binary Optimization

I Wide range
I Quantum annealing
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Combinatorial Optimization

I Polynomial-time problems
I NP-hard problems

I Polynomial time for special cases
I Approximation algorithms

Problem-specific solution algorithms



Quadratic Unconstrained Binary Optimization

I general framework to formulate optimization problems
I QUBO solvers can efficiently solve important problems
I two-step process

1. re-cast the original model into QUBO form
2. solve with an appropriate QUBO solver

I using modern meta-heuristic methods help to find optimal
solutions in acceptable time



Known QUBO problems

I SAT Problems
I Graph Coloring Problems
I Maximum Cut Problems
I Maximum Clique Problems
I Number Partitioning Problems
I Constraint Satisfaction Problems (CSPs)
I Quadratic and Multiple Knapsack Problems
I Capital Budgeting Problems
I Warehouse Location Problems
I Discrete Tomography Problems
I etc.



General QUBO form

minimize/maximize f (x) = xTQx

where xi ∈ {0, 1}

I symmetric Q

I upper-triangular Q



QUBO as an objective function

minimize/maximize f (x) =
∑
i ,j

Qijxixj

where xi ∈ {0, 1}



QUBO as an objective function

minimize/maximize f (x) =
∑
i

Qiixi +
∑
i 6=j

Qijxixj

where xi ∈ {0, 1}

containing linear and quadratic terms



Symmetric Q

∑
i

Qiixi +
∑
i<j

(Qij + Qji)xixj

Transformation

∀i 6= j : Q ′
ij :=

(Qij + Qji)

2



Upper-triangular Q

∑
i

Qiixi +
∑
i<j

(Qij + Qji)xixj

Transformation

∀i , j : Q ′
i ,j :=

{
Qi ,j + Qj ,i , if i < j
0, if i > j



Equivalence to Ising model

Configuration energy:

H(s) = −
∑
i<j

Jijsisj − µ
∑
i

hisi

where si ∈ {−1, 1}

Conversion to QUBO:

xi :=
si + 1
2



Number Partitioning Problem

Partition the set S = {v1, v2, . . . vm} of numbers into S0 and
S1 such that

∑
S0 and

∑
S1 are as close as possible.

vi ∈ Sj ⇒ xi = j

m∑
i=1

vixi

m∑
i=1

vi −
m∑
i=1

vixi

diff =

∣∣∣∣∣
m∑
i=1

vi − 2
m∑
i=1

vixi

∣∣∣∣∣ =
∣∣∣∣∣c − 2

m∑
i=1

vixi

∣∣∣∣∣
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Number Partitioning Problem as QUBO

diff2 =

(
c − 2

m∑
i=1

vixi

)2

= c2 + 4xTQx

where Qii = vi(vi − c) and Qij = Qji = vivj .

minimize xTQx
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Formulating constrained problems as QUBO

minimize y = f (x1, x2)
subject to x1 + x2 ≤ 1

minimize y = f (x1, x2) + Px1x2

I Penalty P is large enough constant
I Penalty P is not too large
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Quadratic penalties

Classical Constraint Equivalent Penalty
x + y ≤ 1 P(xy)

x + y ≥ 1 P(1− x − y + xy)

x + y = 1 P(1− x − y + 2xy)
x ≤ y P(x − xy)

x1 + x2 + x3 ≤ 1 P(x1x2 + x1x3 + x2x3)

x = y P(x + y − 2xy)



Minimum Vertex Cover (MVC) Problem

I let G = (V ,E ) be an undirected graph

I V ′ is a vertex cover if: V ′ ⊆ V , such that:

uv ∈ E =⇒ u ∈ V ′ ∨ v ∈ V ′

I MVC: find a cover with a minimum number of vertices
I formulated as:

minimize
∑
j∈V

xj

subject to ∀uv ∈ E : xu + xv ≥ 1

where xv = 1 iff vertex v is in the cover
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Minimum Vertex Cover (MVC) Problem

I the problem can be re-cast to QUBO by adding penalty
to the objective function

I the penalty (as per the table) is P(1− x − y + xy)

I hence the unconstrained version of the problem is:

minimize
∑
j∈V

xj + P
∑

(i ,j)∈E

(1− xi − xj + xixj)

I which can be written as minimize xTQx + C , where C is
constant term

I since C has no impact in the optimization, it can be
dropped, leaving us with the QUBO form



Summary

I Many optimization problems can be turned to QUBO
I Quadratic penalties
I Uniform solution with successful meta-heuristics
I Applications in Machine Learning
I Equivalence to Ising model
I Quantum annealing
I Hybrid solvers



Set partitioning problem (SPP)

I partition a set of items into subsets so that:
I each item appears in exactly one subset and
I the cost of the subsets chosen is minimized

I appears in many settings including the airline and other
industries

I traditionally formulated in binary variables:

minimize
n∑

j=1
cjxj

subject to: ∀i ∈ [1..m] :
n∑

j=1
aijxj = 1



Set partitioning problem (SPP)

I an SPP can be re-cast into QUBO problem by adding the
quadratic penalties:

P
∑
i

(
n∑

j=1

aijxj − bi)
2

I where the outer sum is taken over all original constrains
I expanding the sums and dropping the additive constant

from the objective function will give the form:

minimize xTQx , x ∈ {0, 1}



Unsupervised Machine Learning

I clustering can be represented as set partitioning problem
solvable by QUBO

I clique partitioning problem offers a general model for
correlation clustering modularity maximization

I application of QUBO based quantum computers are also
a filed of study



Supervised Machine Learning

I the Ising model is useful for any representation of neural
function

I QUBO based processing units could be used with
convolutional neural networks and constraint satisfaction
problems



ML to Improve QUBO Solution Processes

I mainly pre-processing techniques
I identify relationships such as values (or bounds) that can

be assigned to variables
I identify inequalities that can constrain feasible spaces

more tightly
I up to 45% reduction in problem size is possible


