Quadratic Unconstrained Binary Optimization

Zsolt Tabi, Tamás Kozsik

Eötvös Loránd University (ELTE) Budapest, Hungary
2019.

Quadratic Unconstrained Binary Optimization

minimize/maximize $f(x)=x^{\top} Q x$
where $x_{i} \in\{0,1\}$

Quadratic Unconstrained Binary Optimization

- Wide range
- Quantum annealing

Quantum Bridge Analytics I: A Tutorial on Formulating and Using QUBO Models
Fred Glover, Gary Kochenberger, Yu Du
November 2019, arXiv:1811.11538

Combinatorial Optimization

- Polynomial-time problems
- NP-hard problems
- Polynomial time for special cases
- Approximation algorithms

Problem-specific solution algorithms

Quadratic Unconstrained Binary Optimization

- general framework to formulate optimization problems
- QUBO solvers can efficiently solve important problems
- two-step process

1. re-cast the original model into QUBO form
2. solve with an appropriate QUBO solver

- using modern meta-heuristic methods help to find optimal solutions in acceptable time

Known QUBO problems

- SAT Problems
- Graph Coloring Problems
- Maximum Cut Problems
- Maximum Clique Problems
- Number Partitioning Problems
- Constraint Satisfaction Problems (CSPs)
- Quadratic and Multiple Knapsack Problems
- Capital Budgeting Problems
- Warehouse Location Problems
- Discrete Tomography Problems
- etc.

General QUBO form

$$
\text { minimize/maximize } f(x)=x^{\top} Q x
$$

where $x_{i} \in\{0,1\}$

- symmetric Q
- upper-triangular Q

QUBO as an objective function

$$
\text { minimize } / \text { maximize } f(x)=\sum_{i, j} Q_{i j} x_{i} x_{j}
$$

where $x_{i} \in\{0,1\}$

QUBO as an objective function

$$
\text { minimize/maximize } f(x)=\sum_{i} Q_{i i} x_{i}+\sum_{i \neq j} Q_{i j} x_{i} x_{j}
$$

where $x_{i} \in\{0,1\}$
containing linear and quadratic terms

Symmetric Q

$$
\sum_{i} Q_{i i} x_{i}+\sum_{i<j}\left(Q_{i j}+Q_{j i}\right) x_{i} x_{j}
$$

Transformation

$$
\forall i \neq j: Q_{i j}^{\prime}:=\frac{\left(Q_{i j}+Q_{j i}\right)}{2}
$$

Upper-triangular Q

$$
\sum_{i} Q_{i i} x_{i}+\sum_{i<j}\left(Q_{i j}+Q_{j i}\right) x_{i} x_{j}
$$

Transformation

$$
\forall i, j: Q_{i, j}^{\prime}:= \begin{cases}Q_{i, j}+Q_{j, i}, & \text { if } i<j \\ 0, & \text { if } i>j\end{cases}
$$

Equivalence to Ising model

Configuration energy:

$$
\begin{aligned}
& H(s)=-\sum_{i<j} J_{i j} s_{i} s_{j}-\mu \sum_{i} h_{i} s_{i} \\
& \text { where } s_{i} \in\{-1,1\}
\end{aligned}
$$

Conversion to QUBO:

$$
x_{i}:=\frac{s_{i}+1}{2}
$$

Number Partitioning Problem

Partition the set $S=\left\{v_{1}, v_{2}, \ldots v_{m}\right\}$ of numbers into S_{0} and S_{1} such that $\sum S_{0}$ and $\sum S_{1}$ are as close as possible.

Number Partitioning Problem

Partition the set $S=\left\{v_{1}, v_{2}, \ldots v_{m}\right\}$ of numbers into S_{0} and S_{1} such that $\sum S_{0}$ and $\sum S_{1}$ are as close as possible.

$$
v_{i} \in S_{j} \Rightarrow x_{i}=j
$$

Number Partitioning Problem

Partition the set $S=\left\{v_{1}, v_{2}, \ldots v_{m}\right\}$ of numbers into S_{0} and S_{1} such that $\sum S_{0}$ and $\sum S_{1}$ are as close as possible.

$$
v_{i} \in S_{j} \Rightarrow x_{i}=j
$$

$$
\sum_{i=1}^{m} v_{i} x_{i}
$$

Number Partitioning Problem

Partition the set $S=\left\{v_{1}, v_{2}, \ldots v_{m}\right\}$ of numbers into S_{0} and S_{1} such that $\sum S_{0}$ and $\sum S_{1}$ are as close as possible.

$$
\begin{gathered}
v_{i} \in S_{j} \Rightarrow x_{i}=j \\
\sum_{i=1}^{m} v_{i} x_{i} \quad \sum_{i=1}^{m} v_{i}-\sum_{i=1}^{m} v_{i} x_{i}
\end{gathered}
$$

Number Partitioning Problem

Partition the set $S=\left\{v_{1}, v_{2}, \ldots v_{m}\right\}$ of numbers into S_{0} and S_{1} such that $\sum S_{0}$ and $\sum S_{1}$ are as close as possible.

$$
\begin{gathered}
v_{i} \in S_{j} \Rightarrow x_{i}=j \\
\sum_{i=1}^{m} v_{i} x_{i} \sum_{i=1}^{m} v_{i}-\sum_{i=1}^{m} v_{i} x_{i} \\
\operatorname{diff}=\left|\sum_{i=1}^{m} v_{i}-2 \sum_{i=1}^{m} v_{i} x_{i}\right|
\end{gathered}
$$

Number Partitioning Problem

Partition the set $S=\left\{v_{1}, v_{2}, \ldots v_{m}\right\}$ of numbers into S_{0} and S_{1} such that $\sum S_{0}$ and $\sum S_{1}$ are as close as possible.

$$
\begin{gathered}
v_{i} \in S_{j} \Rightarrow x_{i}=j \\
\sum_{i=1}^{m} v_{i} x_{i} \quad \sum_{i=1}^{m} v_{i}-\sum_{i=1}^{m} v_{i} x_{i} \\
\operatorname{diff}=\left|\sum_{i=1}^{m} v_{i}-2 \sum_{i=1}^{m} v_{i} x_{i}\right|=\left|c-2 \sum_{i=1}^{m} v_{i} x_{i}\right|
\end{gathered}
$$

Number Partitioning Problem as QUBO

$$
\operatorname{diff}^{2}=\left(c-2 \sum_{i=1}^{m} v_{i} x_{i}\right)^{2}
$$

Number Partitioning Problem as QUBO

$$
\operatorname{diff}^{2}=\left(c-2 \sum_{i=1}^{m} v_{i} x_{i}\right)^{2}=c^{2}+4 x^{T} Q x
$$

Number Partitioning Problem as QUBO

$$
\operatorname{diff}^{2}=\left(c-2 \sum_{i=1}^{m} v_{i} x_{i}\right)^{2}=c^{2}+4 x^{T} Q x
$$

where $Q_{i i}=v_{i}\left(v_{i}-c\right)$ and $Q_{i j}=Q_{j i}=v_{i} v_{j}$.

Number Partitioning Problem as QUBO

$$
\operatorname{diff}^{2}=\left(c-2 \sum_{i=1}^{m} v_{i} x_{i}\right)^{2}=c^{2}+4 x^{T} Q x
$$

where $Q_{i i}=v_{i}\left(v_{i}-c\right)$ and $Q_{i j}=Q_{j i}=v_{i} v_{j}$.

$$
\operatorname{minimize} x^{T} Q x
$$

Formulating constrained problems as QUBO

minimize $y=f\left(x_{1}, x_{2}\right)$
subject to $x_{1}+x_{2} \leq 1$

Formulating constrained problems as QUBO

minimize $y=f\left(x_{1}, x_{2}\right)$
subject to $x_{1}+x_{2} \leq 1$
minimize $y=f\left(x_{1}, x_{2}\right)+P x_{1} x_{2}$

Formulating constrained problems as QUBO

minimize $y=f\left(x_{1}, x_{2}\right)$
subject to $x_{1}+x_{2} \leq 1$
minimize $y=f\left(x_{1}, x_{2}\right)+P x_{1} x_{2}$

- Penalty P is large enough constant
- Penalty P is not too large

Quadratic penalties

Classical Constraint	Equivalent Penalty
$x+y \leq 1$	$P(x y)$
$x+y \geq 1$	$P(1-x-y+x y)$
$x+y=1$	$P(1-x-y+2 x y)$
$x \leq y$	$P(x-x y)$
$x_{1}+x_{2}+x_{3} \leq 1$	$P\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)$
$x=y$	$P(x+y-2 x y)$

Minimum Vertex Cover (MVC) Problem

- let $G=(V, E)$ be an undirected graph

Minimum Vertex Cover (MVC) Problem

- let $G=(V, E)$ be an undirected graph
- V^{\prime} is a vertex cover if: $V^{\prime} \subseteq V$, such that:

$$
u v \in E \Longrightarrow u \in V^{\prime} \vee v \in V^{\prime}
$$

Minimum Vertex Cover (MVC) Problem

- let $G=(V, E)$ be an undirected graph
- V^{\prime} is a vertex cover if: $V^{\prime} \subseteq V$, such that:

$$
u v \in E \Longrightarrow u \in V^{\prime} \vee v \in V^{\prime}
$$

- MVC: find a cover with a minimum number of vertices

Minimum Vertex Cover (MVC) Problem

- let $G=(V, E)$ be an undirected graph
- V^{\prime} is a vertex cover if: $V^{\prime} \subseteq V$, such that:

$$
u v \in E \Longrightarrow u \in V^{\prime} \vee v \in V^{\prime}
$$

- MVC: find a cover with a minimum number of vertices
- formulated as:

$$
\begin{gathered}
\text { minimize } \sum_{j \in V} x_{j} \\
\text { subject to } \forall u v \in E: x_{u}+x_{v} \geq 1 \\
\text { where } x_{v}=1 \text { iff vertex } v \text { is in the cover }
\end{gathered}
$$

Minimum Vertex Cover (MVC) Problem

- the problem can be re-cast to QUBO by adding penalty to the objective function
- the penalty (as per the table) is $P(1-x-y+x y)$
- hence the unconstrained version of the problem is:

$$
\operatorname{minimize} \sum_{j \in V} x_{j}+P \sum_{(i, j) \in E}\left(1-x_{i}-x_{j}+x_{i} x_{j}\right)
$$

- which can be written as minimize $x^{\top} Q x+C$, where C is constant term
- since C has no impact in the optimization, it can be dropped, leaving us with the QUBO form

Summary

- Many optimization problems can be turned to QUBO
- Quadratic penalties
- Uniform solution with successful meta-heuristics
- Applications in Machine Learning
- Equivalence to Ising model
- Quantum annealing
- Hybrid solvers

Set partitioning problem (SPP)

- partition a set of items into subsets so that:
- each item appears in exactly one subset and
- the cost of the subsets chosen is minimized
- appears in many settings including the airline and other industries
- traditionally formulated in binary variables:

$$
\operatorname{minimize} \sum_{j=1}^{n} c_{j} x_{j}
$$

subject to: $\forall i \in[1 . . m]: \sum_{j=1}^{n} a_{i j} x_{j}=1$

Set partitioning problem (SPP)

- an SPP can be re-cast into QUBO problem by adding the quadratic penalties:

$$
P \sum_{i}\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right)^{2}
$$

- where the outer sum is taken over all original constrains
- expanding the sums and dropping the additive constant from the objective function will give the form:

$$
\operatorname{minimize} x^{T} Q x, x \in\{0,1\}
$$

Unsupervised Machine Learning

- clustering can be represented as set partitioning problem solvable by QUBO
- clique partitioning problem offers a general model for correlation clustering modularity maximization
- application of QUBO based quantum computers are also a filed of study

Supervised Machine Learning

- the Ising model is useful for any representation of neural function
- QUBO based processing units could be used with convolutional neural networks and constraint satisfaction problems

ML to Improve QUBO Solution Processes

- mainly pre-processing techniques
- identify relationships such as values (or bounds) that can be assigned to variables
- identify inequalities that can constrain feasible spaces more tightly
- up to 45% reduction in problem size is possible

