Quantum searching in unsorted database: Grover's algorithm

Katalin Friedl

Dept. of Computer Science and Information Theory

BME

November 21, 2019

Search problem

Basic version

Given elements $a_0, a_2, \ldots, a_{N-1}$ and b — find a k s.t. $a_k = b$

General version

Given $f: \{0, \dots, N-1\} \rightarrow \{0, 1\}$ — find k s.t. f(k) = 1

Here *f* is given by **black box**:

$$x \longrightarrow f \longrightarrow f(x)$$

Goal

Minimize the number of queries

Deterministic algorithm

Number of queries

- worst case: N
- average case: $\approx N/2$

Goal

Minimize the number of queries

Deterministic algorithm

Number of queries

- worst case: N
- average case: $\approx N/2$

Probabilistic algorithm

Number of queries

• for success prob. 0.1: $\approx N/10$

Quantum search

Also called as Grover's Search

Lov K. Grover, 1996 Quantum search in $O(\sqrt{N})$ queries finds a solution with large probability

needs a quantum box

K. Friedl (BME SZIT)

Grover's algorithm

November 21, 2019 4 / 20

Lov K. Grover, 1996 Quantum search in $O(\sqrt{N})$ queries finds a solution with large probability

needs a quantum box

$$\sum_{x} \alpha_{x} |x\rangle \longrightarrow \boxed{f} \longrightarrow \sum_{x} (-1)^{f(x)} \alpha_{x} |x\rangle$$

Lov K. Grover, 1996 Quantum search in $O(\sqrt{N})$ queries finds a solution with large probability

needs a quantum box

$$\sum_{x} \alpha_{x} |x\rangle \longrightarrow \boxed{f} \longrightarrow \sum_{x} (-1)^{f(x)} \alpha_{x} |x\rangle$$

Number of queries for *N* elements, *t* solutions:

K. Friedl (BME SZIT)

Applications

In any algorithm which uses search

• search in a huge database

Applications

In any algorithm which uses search

- search in a huge database
- break passwords

Applications

In any algorithm which uses search

- search in a huge database
- break passwords
- graph algorithms
 - graph traversals

idea: looking for an unvisited neighbor is a search problem — use Grover's algorithm

BFS, DFS : classical $O(N^2) \longrightarrow$ quantum $O(N^{3/2})$

– shortest path : classical $O(N^2) \longrightarrow$ quantum $ilde{O}(N^{3/2})$

Views

One algorithm - different views

Views

One algorithm – different views

- geometric intuition
- algebraic generalized tool
- quantum algorithm

Views

One algorithm - different views

- geometric intuition
- algebraic generalized tool
- quantum algorithm

Now assume: exactly one solution (t = 1)

Flipping the sign of one component — reflection

Flipping the sign of one component — reflection

Flipping the sign of one component — reflection

two reflections=one rotation by 2α (α is the angle of the two vectors)

Flipping the sign of one component — reflection

two reflections=one rotation by 2α (α is the angle of the two vectors)

Flipping the sign of one component — reflection

two reflections=one rotation by 2α (α is the angle of the two vectors)

For larger dimensions

Reflection *R* to v^{\perp} , the hyperplane orthogonal to *v*:

Rv = -v, Rw = w if $w \perp v$

Flipping the sign of one component — reflection

two reflections=one rotation by 2α (α is the angle of the two vectors)

For larger dimensions

Reflection *R* to v^{\perp} , the hyperplane orthogonal to *v*:

Rv = -v, Rw = w if $w \perp v$

U unitary $\implies URU^{-1}$ is a reflection to $(Uv)^{\perp}$ $URU^{-1}(Uv) = -Uv$, $URU^{-1}(Uw) = Uw$ if $w \perp v$, i.e., $Uw \perp Uv$

K. Friedl (BME SZIT)

Setup

 $egin{aligned} N ext{ elements} &\longrightarrow N ext{ dimensional space} \\ ext{ elements} &\longrightarrow ext{ orthogonal basis} \\ a_x &\mapsto |x
angle \end{aligned}$

Given: quantum box for f — reflection R to $|k\rangle^{\perp}$ (k is the only solution of f(x) = 1)

Goal: determine k — find the corresponding basis vector $|k\rangle$

Need: $N = 2^n$

K. Friedl (BME SZIT)

What to do

Construct R_0 , the reflection to $|0\rangle^{\perp}$

What to do

Construct R_0 , the reflection to $|0\rangle^{\perp}$ easy (conditional phase shift)

What to do

Construct R_0 , the reflection to $|0\rangle^{\perp}$ easy (conditional phase shift)

Use Hadamard to obtain $R_u = HR_0H^{-1} = HR_0H$ (*H* is the Hadamard operator, $H = H^{-1}$)

What to do

Construct R_0 , the reflection to $|0\rangle^{\perp}$ easy (conditional phase shift)

Use Hadamard to obtain $R_u = HR_0H^{-1} = HR_0H$ (*H* is the Hadamard operator, $H = H^{-1}$)

Use $R_u R$ several times — rotations by angle 2α

What to do

Construct R_0 , the reflection to $|0\rangle^{\perp}$ easy (conditional phase shift)

Use Hadamard to obtain $R_u = HR_0H^{-1} = HR_0H$ (*H* is the Hadamard operator, $H = H^{-1}$)

Use $R_u R$ several times — rotations by angle 2α

Stop when target $|k\rangle$ is close

Angle

Angle of rotations = 2α

 $\alpha = \text{angle of the vectors } \left| k \right\rangle \text{ and } H \left| \mathbf{0} \right\rangle,$

 $H\left|0
ight
angle=N^{-1/2}\sum_{x}\left|x
ight
angle$

 α can be computed by inner product

This is $N^{-1/2} = \cos \alpha$ (unit vectors)

So for large $N \quad \alpha \approx \pi/2$, $2\alpha \approx \pi$ too large

Reducing the angle

2D

Replacing R_u by $-R_u$ gives reflection to the orthogonal direction

the **new angle** is $\alpha' = \pi/2 - \alpha$

then $\cos \alpha = \sin \alpha' = N^{-1/2}$

so,
$$\alpha' \approx N^{-1/2}$$
 for large N
angle of rotation: $2\alpha' \approx \frac{2}{\sqrt{N}}$

Reducing the angle

2D

Replacing R_u by $-R_u$ gives reflection to the orthogonal direction

the **new angle** is $\alpha' = \pi/2 - \alpha$

then $\cos \alpha = \sin \alpha' = N^{-1/2}$

so,
$$lpha' pprox N^{-1/2}$$
 for large N
angle of rotation: $2lpha' pprox rac{2}{\sqrt{N}}$

Grover operator

$$G = -R_u R = H(-R_0) H R$$

K. Friedl (BME SZIT)

Grover's algorithm

Algorithm

- $\bullet\,$ Start with basis vector $|0\rangle$
- Apply H

• Apply
$$\left\lceil \frac{\pi/2}{2\alpha'} \right\rceil$$
 times the Grover operator $G = H(-R_0)HR$

Measure

Here

$$\begin{split} N &= 2^n \\ H_2 &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \text{ and } H = H_2^{\otimes n} \\ (-R_0) &= \text{ conditional phase shift: } |x\rangle \mapsto \begin{cases} |x\rangle & \text{if } x = 0 \\ -|x\rangle & \text{if } x \neq 0 \end{cases} \end{split}$$

Result

Theorem

The vector obtained at the end is the (unique) solution $|k\rangle$ with constant probability.

The number of queries is $\left\lceil \frac{\pi}{4} \sqrt{N} \right\rceil$.

Result

Theorem

The vector obtained at the end is the (unique) solution $|k\rangle$ with constant probability.

The number of queries is $\left\lceil \frac{\pi}{4}\sqrt{N} \right\rceil$.

The result can be checked —

and if it is not a solution then repeat the process

Repeating several times increases the success probability.

Result

Theorem

The vector obtained at the end is the (unique) solution $|k\rangle$ with constant probability.

The number of queries is $\left\lceil \frac{\pi}{4}\sqrt{N} \right\rceil$.

The result can be checked —

and if it is not a solution then repeat the process

Repeating several times increases the success probability.

Careful only a few further step does not necessarily improve the approximation!

Remarks

Looking the geometry in 2D is not cheating:

- ullet Interesting things happen only in the span of $|k\rangle$ and $H\left|0\right\rangle$
- Vectors in the orthogonal subspace are fixed (or the signs are changed)

When there are t > 1 solutions

• if t is known $\frac{1}{\sqrt{t}} \sum_{f(k)=1} |k\rangle \quad \text{replaces} \quad |k\rangle$ angle of rotation $\approx 2\sqrt{t/N}$ number of queries $O(\sqrt{N/t})$

if t is unknown

similarly to binary search or random number of iterations works (with large probability)

Algebraic view

 $R_0 = I - 2P_0$, where P_0 is a **projection** to $|0\rangle$

 $HR_0H = I - 2P$, where P is a projection to $H|0\rangle = \sum_x |x\rangle$

In matrix form

$$HR_{0}H = \begin{pmatrix} 1 - \frac{2}{N} & -\frac{2}{N} & \cdots & -\frac{2}{N} \\ -\frac{2}{N} & 1 - \frac{2}{N} & \cdots & -\frac{2}{N} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{2}{N} & -\frac{2}{N} & \cdots & 1 - \frac{2}{N} \end{pmatrix}$$

Algebraic view

The action of $H(-R_0)H$ on a vector is

$$\sum_{x} \alpha_{x} \left| x \right\rangle \mapsto \sum_{x} (2A - \alpha_{x}) \left| x \right\rangle$$

where A is the average $A = \frac{\sum_{x} \alpha_{x}}{N}$

Transformation of coordinates: $\alpha_x \mapsto 2A - \alpha_x = A + (A - \alpha_x)$ is inversion about average

K. Friedl (BME SZIT)

Grover's algorithm

November 21, 2019 16 / 20

Circuit

Schematic circuit

Grover operation

Related problems

Smallest, largest elements

Grover's algorithm can be used $O(\sqrt{N})$ queries

Approximate counting

Grover's algorithm + phase estimation

Ordered search

Very different — Grover does not help

classical: log n queries

Related problems

Smallest, largest elements

Grover's algorithm can be used $O(\sqrt{N})$ queries

Approximate counting

Grover's algorithm + phase estimation

Ordered search

Very different — Grover does not help

classical: log n queries

quantum algorithm $\approx 0.4 \log n$ (Child, Landahl, Parillo 2006) quantum lower bound $\approx 0.22 \log n$ (Høyer, Neerbek, Shi 2001)

K. Friedl (BME SZIT)

Grover's algorithm

Summary

For unordered search among N elements

- classical algorithms need N queries
- quantum search needs only $O(\sqrt{N})$

Grover's algorithm is optimal (Bennett, Bernstein, Brassard, Vazirani, 1997)

Can speed up algorithms containing some search

Requires quantum box (quantum oracle) - not always easy to make