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There is a handy python environment also  
for quantum programming the IBM machines 



Mitigation of the readout noise
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Early approaches to computing machines and programs

Charles Babbage’s Difference and Analytical Engines
Ada Lovelace’s program to calculate Bernoulli numbers



Definition of Computation and the Turing Machine



Church-Turing thesis 
(simple version):
Everything that is computable is 
computable by a Turing machine

The extended Church-Turing thesis
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The extended Church-Turing thesis:
Any "reasonable" model of computation can 
be efficiently simulated on a probabilistic 
Turing machine (an efficient simulation is 
one whose running time is bounded by 
some polynomial in the running time of the 
simulated machine).



Bits and Boolean Gates



Circuits of Gates



Related problems can have very different complexity



The RSA factoring challenge



How hard is it to break RSA



Complexity classes
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260 atoms, is it a lot?







Qubit: the two state quantum mechanical system 
obeying a superposition principle
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I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1

• there is only one non-trivial single-bit gate: NOT

• two-bit gate: n = 2, m = 1, e.g., AND, OR, XOR

• c-gates are not necessarily reversible: e.g., any n > m gate is irreversible

• c-circuit : an arrangement of "wires" and gates

• universal gate set : a set of gates that allows to construct circuits for any algorithm

• exercise: construct a c-circuit that adds two single-bit numbers using only the NAND gate

III. QUANTUM BIT

1. quantum bit, qubit, q-bit, qbit : two-level quantum system

2. state of a qubit: | i = ↵0 |0i+ ↵1 |1i

3. ↵0, ↵1 are called amplitudes; they are complex numbers

4. |0i and |1i are the qubit basis states

5. normalization condition: |↵0|2 + |↵1|2 = 1

6. alternative notation (vector notation or spinor notation):
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7. realizations: electron spin, nuclear spins (e.g., H-1, C-13), superconducting circuits, etc.



Measurement (`readout’) of a qubit
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IV. DYNAMICS OF A QUANTUM BIT

1. time-dependent Schrodinger equation: ~
i  ̇(t) +H(t) (t) = 0.

2. for a qubit, H(t) is a 2x2 Hermitian matrix

3. Hamiltonian can be expressed with Pauli matrices

H(t) =
3X

j=0

cj(t)�j

�0 =

✓
0 0
0 0

◆
, �x =

✓
0 1
1 0

◆
, �y =

✓
0 �i

i 0

◆
, �z =

✓
1 0
0 �1

◆
.

4. dynamics for a time-independent Hamiltonian:  (t) = exp
�
� i

~Ht
�
 (0) ⌘ U(t) (0)

5. U(t) is a unitary matrix, called the propagator

6. dynamics for a time-dependent Hamiltonian is also unitary:  (t) = T exp
⇣
� i

~
R t
0 dt

0
H(t0)

⌘
 (0) ⌘ U(t) (0)

V. MEASUREMENT OF A QUBIT

1. | i = ↵0 |0i+ ↵1 |1i

2. the probability of measuring 0 is P0 = |↵0|2

3. the probability of measuring 1 is P1 = |↵1|2 = 1� P0

4. if the outcome of the measurement is 0, then the state changes to |0i

5. if the outcome of the measurement is 1, then the state changes to |1i

VI. GEOMETRICAL REPRESENTATION OF A QUBIT: THE BLOCH SPHERE

1. we can parametrize the qubit state with three angles, �, ✓, �:

| i = ↵0 |0i+ ↵1 |1i = e
i�(cos

✓

2
|0i+ e

i' sin
✓

2
|1i

2. angle � has no physical significance

3. the qubit state can be mapped to the surface of a unit sphere (Bloch sphere):

| i 7! (✓,�) 7! n =
�
sin ✓ cos�, sin ✓ sin�, cos ✓

�

4. another mapping, seemingly different, but actually identical to n:

p = h |�| i ,

where � = (�x,�y,�z).

5. n ⌘ p is called the Bloch vector or the polarization vector of the qubit



More qubits
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VII. MORE QUBITS

1. states of two qubits: | i = ↵00 |00i+ ↵01 |01i+ ↵10 |10i+ ↵11 |11i

2. normalization condition:
P

x2{0,1}2 |↵x|2 = 1

3. a single-qubit state can be represented on the Bloch sphere; does not work for multiple-qubit states

4. measurement of one qubit: e.g., of the first one: P0 = |↵00|2 + |↵01|2, and the post-measurement state after
measuring 0 is

| pmi = ↵00 |00i+ ↵01 |01ip
P0

5. example for a two-qubit product state:

| i = 1

2
|00i+ 1

2
|01i+ 1

2
|10i+ 1

2
|11i = |0i+ |1ip

2
⌦ |0i+ |1ip

2

6. example for a two-qubit entangled state:

| i = |00i+ |11ip
2

7. the state of n qubits is described by 2n amplitudes

VIII. 1-QUBIT QUANTUM GATES

1. q-circuit: an arrangement of "wires" and quantum gates

2. q-gates: unitary operations on a few qubits (reversible, unlike c-gates)

3. 1-qubit gate example: q-NOT (usually called the X gate):

| 1i = ↵ |0i+ � |1i 7! | 2i = ↵ |1i+ � |0i

matrix representation of this gate: X ⌘ �x =

✓
0 1
1 0

◆

4. further 1-qubit gate examples:

Z gate: Z = �z =

✓
1 0
0 �1

◆

Hadamard gate: H =
1p
2

✓
1 1
1 �1

◆

5. each 1-qubit gate generates a bijective map of the Bloch sphere to itself

6. exercise: determine the transformations generated by 1-qubit gates listed above
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1-qubit quantum gates

c-circuit

q-circuit



Creating a uniform superpositions 
with Hadamard Gates 



2-qubit quantum gates
control bit

target bit
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X. 2-QUBIT QUANTUM GATES

1. 2-qubit gate example: controlled-NOT or CNOT
with the basis-state ordering |00i, |01i, |10i, |11i, it is represented by

UCNOT =

0

B@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CA

it could be represented by a ‘classical’ truth table

2. 1-qubit gates together with CNOT form a unversal q-gate set

XI. DEUTSCH-ALGORITHM

1. A simple oracle problem: f : {0, 1} ! {0, 1} is an unknown function; i.e., it is one of the following 4 functions:

constant (value = 1) constant (value = 0)
0!1 0! 0
1!1 1! 0

balanced (NOT) balanced (id.)
0!1 0! 0
1!0 1! 1

2. task: figure out, by evaluating f a few times, whether f is constant or balanced

3. solution: one has to evaluate f twice, for input 0 and for input 1, and the results will tell if f is constant or
balanced

4. a single evaluation of f is not sufficient to complete the task



CNOTs with the same target qubit



The Bernstein-Vazirani Problem

Black Box

How many queries do we need to determine the secret bit string? 



The Bernstein-Vazirani Algorithm

See lecture of András



Shor’s algorithm in short



Complexity classes



STRUCTURE OF THIS WORKSHOP


