ODE/IM correspondence and the Argyres-Douglas Theory

Katsushi Ito
Tokyo Institute of Technology

December 9, 2016@Wigner Research Centre for Physics
in collaboration with Christopher Locke and Hongfei Shu arXiv: 1312.6759,1502.00906, 1605.04668+ work in progress

Introduction

- The ODE/IM correspondence is a relation between spectral analysis approach of ordinary differential equation (ODE), and the "functional relations" approach to 2d quantum integrable model (IM). [Dorey-Tateo 1998]
- This is an example of non-trivial correspondence between classical and quantum integrable models
- Dorey-Tateo (1998) studied the spectral determinant of the second order differential equation

$$
\left(-\frac{d^{2}}{d x^{2}}+x^{2 M}-E\right) \psi(x, E)=0
$$

and its relation to the $A_{2 M-1}$-type Thermodynamic Bethe-ansatz (TBA) equations.

- Lukyanov-Zamolodchikov (2010) studied the relation for the linear problem associated with the sinh-Gordon equation

$$
\varphi_{t t}-\varphi_{x x}+\sinh \varphi=0
$$

and the quantum XXZ model. In the conformal limit, this relation reduces to the above ODE/IM correspondence.

- This suggests existence of Lie algebraic structure behind this mysterious correspondence.

Motivation

- Understand mathematical structure and physical meaning of the ODE/IM correspondence making (complete) dictionaries relations among integrable models
- Application to the AdS/CFT correspondence Gluon scattering amplitudesat strong coupling [Alday-Maldacena, Alday-Maldacena-Sever-Vieira, Hatsuda-KI-Sakai-Satoh]
- Application to $\mathcal{N}=2$ SUSY gauge theories

Omega-background and quantum spectral curve [Nekrasov-Shatashvili]

We will

- introduce some basic concepts of the ODE/IM correspondence
- and discuss its application to the Argyres-Douglas theory
(1) Introduction
(2) $\mathrm{ODE} / \mathrm{IM}$ correspondence
(3) Affine Toda Field Equations and ODE/IM correspondence

4) $\mathrm{ODE} / \mathrm{IM}$ correspondence and the Argyres-Douglas Theory
(5) Conclusions and Outlook

ODE/IM correspondence

[Dorey-Tateo, Bazhanov-Lukyanov-Zamolodchikov]

- ODE

$$
\left[-\frac{d^{2}}{d x^{2}}+\frac{\ell(\ell+1)}{x^{2}}+x^{2 M}-E\right] y(x, E, \ell)=0
$$

$x \in \mathbf{C}, E$ complex, ℓ : real, $M>0$

- large, real positive x : we have two (divergent and convergent) solutions. subdominant (small) solution

$$
y(x, E, \ell) \sim \frac{x^{-\frac{M}{2}}}{\sqrt{2 i}} \exp \left(-\frac{x^{M+1}}{M+1}\right) \quad(x \rightarrow \infty)
$$

is defined uniquely in the sector $|\arg x|<\frac{\pi}{2 M+2}$

- small x asymptotics:

$$
y(x, E, \ell) \sim x^{\ell+1}, x^{-\ell}
$$

- The ODE is invariant under the rotation $x \rightarrow a x, E \rightarrow a^{2 M} E$:

$$
\left[\frac{1}{a^{2}}\left(-\frac{d^{2}}{d x^{2}}+\frac{\ell(\ell+1)}{x^{2}}\right)+a^{2 M}\left(x^{2 M}-E\right)\right] y\left(a x, a^{2 M} E, \ell\right)=0
$$

for $a=\omega=\exp \left(\frac{2 \pi i}{2 M+2}\right)$.

- Symanzik rotation of $y(x, E, \ell)$:

$$
y_{k}(x, E, \ell)=\omega^{\frac{k}{2}} y\left(\omega^{-k} x, \omega^{2 k} E, \ell\right)
$$

is also the solution of the ODE. $(k \in \mathbf{Z})$

- y_{k} is subdominant in the sector $\mathcal{S}_{k}=\left\{\left.x| | \arg x-\frac{2 k \pi}{2 M+2} \right\rvert\,<\frac{\pi}{2 M+2}\right\}$
- $\left\{y_{k}, y_{k+1}\right\}$ forms a basis of the solutions.
- The Wronskian $W[f, g]:=f g^{\prime}-f^{\prime} g$
- If f, g are the solutions, then $W[f, g]$ is a constant, independent of x.
- $W[f, g]=-W[g, f]$
- $W_{k_{1}, k_{2}}(E, \ell):=W\left[y_{k_{1}}, y_{k_{2}}\right]$
- $W_{0,1}=1$ (evaluated by asymptotic behaviour of y_{0} and y_{1})
- Periodicity (Symanzik rotation)

$$
W_{k_{1}+1, k_{2}+1}(E, \ell)=W_{k_{1}, k_{2}}\left(\omega^{2} E, \ell\right)
$$

$$
W_{k, k+1}(E, \ell)=1
$$

- $\left\{y_{0}, y_{1}\right\}$ are chosen as a fixed basis. We have the Stokes relation

$$
y_{k}=-\frac{W_{1, k}}{W_{0,1}} y_{0}+\frac{W_{0, k}}{W_{0,1}} y_{1}=-T_{k-2}^{[k+1]} y_{0}+T_{k-1}^{[k]} y_{1}
$$

- T-function

$$
\begin{aligned}
T_{s}(E, \ell):= & \left(\frac{W_{0, s+1}(E, \ell)}{W_{0,1}}\right)^{[-(s+1)]}, \quad(s \in \mathbf{Z}) \\
& f(E, \ell)^{[m]}:=f\left(\omega^{m} E, \ell\right)
\end{aligned}
$$

- The Plücker relation

$$
W\left[y_{k_{1}}, y_{k_{2}}\right] W\left[y_{k_{3}}, y_{k_{4}}\right]=W\left[y_{k_{1}}, y_{k_{4}}\right] W\left[y_{k_{3}}, y_{k_{2}}\right]+W\left[y_{k_{3}}, y_{k_{1}}\right] W\left[y_{k_{4}}, y_{k_{2}}\right]
$$

for $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(1, s+2,0, s+1)$ leads to the functional relation called the T -system

$$
T_{s}^{[+1]} T_{s}^{[-1]}=T_{s-1} T_{s+1}+1 \quad(s \in \mathbf{Z})
$$

- The Y-functions: $Y_{s}=T_{s-1} T_{s+1}$ define the Y -system:

$$
Y_{s}^{[+1]} Y_{s}^{[-1]}=\left(1+Y_{s+1}\right)\left(1+Y_{s-1}\right)
$$

The boundary conditions for the T-system

- generic M and $\ell\left(T_{s} \propto W_{0, s+1}\right)$

$$
T_{-1}=0, \quad T_{0}=1
$$

$T_{s}(s \geq 0)$ are non-zero.

- $\ell=0,2 M+2=n \geq 4$: integer no singularity (monodromy) at $x=0$

$$
y_{n}(x) \propto y_{0}\left(e^{-2 \pi i} x\right)=y_{0}(x)
$$

$T_{n-1}=0 \Longrightarrow A_{n-2}$-type T-system

- $\ell \neq 0,2 M+2=n \geq 4$: integer

There is a monodromy around $z=0 . \Longrightarrow D_{n-2}$-type T-system

Baxter's T-Q relation

The basis of the ODE around $x=0$

$$
\psi_{+}(x, E, \ell):=x^{\ell+1}+\cdots, \quad \psi_{-}(x, E, \ell):=x^{-\ell}+\cdots
$$

- Monodromy around the origin: $\psi_{+}\left(e^{2 \pi i} x\right)=e^{2 \pi i(\ell+1)} \psi_{+}(x)$
- Q-function: $Q_{ \pm}(E, \ell)=W\left[y_{0}, \psi_{ \pm}\right](E, \ell)$

$$
W\left[y_{k}, \psi_{ \pm}\right](E, \ell)=\omega^{ \pm\left(\ell+\frac{1}{2}\right)} W\left[y_{0}, \psi_{ \pm}\right]\left(\omega^{2 k} E, \ell\right)
$$

Baxter's T-Q relation: $-T_{-3} y_{0}=y_{-1}+y_{1}$

$$
\left(-T_{-3}\right) Q_{ \pm}(E, \ell)=\omega^{\mp\left(\ell+\frac{1}{2}\right)} Q_{ \pm}\left(\omega^{-2} E, \ell\right)+\omega^{ \pm\left(\ell+\frac{1}{2}\right)} Q_{ \pm}\left(\omega^{2} E, \ell\right)
$$

- $E=E_{n}$ such that $T\left(E_{n}, \ell\right)=0\left(y_{0}, y_{1}\right.$ become linearly dependent $)$

$$
\frac{Q_{ \pm}\left(\omega^{-2} E_{n}, \ell\right)}{Q_{ \pm}\left(\omega^{2} E_{n}, \ell\right)}=-\omega^{ \pm(2 \ell+1)}
$$

Bethe ansatz equation of the twisted six-vertex model

Y-system and TBA equation

- [Zamoldchikov] The Y-system can be transformed into the non-linear integral equations (the Thermodynamic Bethe-ansatz (TBA) equation). $\epsilon_{a}(\theta)=\log Y_{a}(\theta)$: pseudo-energy $(E=\exp (2 M \theta /(M+1)))$

$$
\epsilon_{a}(\theta)=m_{a} L e^{\theta}-\sum_{b} \int_{-\infty}^{+\infty} \phi_{a b}\left(\theta-\theta^{\prime}\right) \log \left(1+e^{-\epsilon_{b}\left(\theta^{\prime}\right)}\right) d \theta^{\prime}
$$

- free energy

$$
F(L)=-\frac{1}{4 \pi} \sum_{a} \int_{-\infty}^{+\infty} m_{a} e^{\theta} \log \left(1+e^{-\epsilon_{a}(\theta)}\right) d \theta=-\frac{\pi c_{e f f}}{6 L}
$$

- The UV effective central charge becomes

$$
c_{e f f}^{U V}=1-\frac{6\left(\ell+\frac{1}{2}\right)^{2}}{M+1}
$$

which agrees with the one of the twisted six-vertex model.

Affine Toda Field Equations and ODE/IM correspondence

- two-dimensional affine Toda field Theory based on $\hat{\mathfrak{g}}$
- r-component scalar fields: $\phi(z, \bar{z})=\left(\phi^{1}, \ldots, \phi^{r}\right)$
- complex coordinates: $z=\frac{1}{2}\left(x^{0}+i x^{1}\right), \quad \bar{z}=\frac{1}{2}\left(x^{0}-i x^{1}\right)\left(z=\rho e^{i \theta}\right)$
- Lagrangian

$$
\mathcal{L}=\frac{1}{2} \partial^{\mu} \phi \cdot \partial_{\mu} \phi-\left(\frac{m}{\beta}\right)^{2} \sum_{i=0}^{r} n_{i}\left[\exp \left(\beta \alpha_{i} \cdot \phi\right)-1\right]
$$

- $\alpha_{1}, \cdots, \alpha_{r}$: simple roots of \mathfrak{g}

$$
\alpha_{0}=-\theta=-\sum_{i=1}^{r} n_{i} \alpha_{i}: \text { highest root, } n_{0} \equiv 1
$$

- affine Toda field equation:

$$
\partial_{z} \partial_{\bar{z}} \phi+\left(\frac{m^{2}}{\beta}\right) \sum_{i=0}^{r} n_{i} \alpha_{i} \exp \left(\beta \alpha_{i} \phi\right)=0 .
$$

modified affine Toda field equation

- without the potential term $e^{\beta \alpha_{0} \phi}$, the theory is conformally invariant (e.g. Liouville theory)
- with the potential term $e^{\beta \alpha_{0} \phi}$, it becomes massive theory. The equation of motion changes under the conformal transformation.
conformal transformation (ρ^{\vee} : co-Weyl vector)

$$
z \rightarrow \tilde{z}=f(z), \quad \phi \rightarrow \tilde{\phi}=\phi-\frac{1}{\beta} \rho^{\vee} \log (\partial f \bar{\partial} \bar{f}),
$$

modified affine Toda equations:

$$
\begin{gathered}
\partial \bar{\partial} \phi+\left(\frac{m^{2}}{\beta}\right)\left[\sum_{i=1}^{r} n_{i} \alpha_{i} \exp \left(\beta \alpha_{i} \phi\right)+p(z) \bar{p}(\bar{z}) n_{0} \alpha_{0} \exp \left(\beta \alpha_{0} \phi\right)\right]=0 \\
p(z)=(\partial f)^{h}, \quad \bar{p}(\bar{z})=(\bar{\partial} \bar{f})^{h}
\end{gathered}
$$

Lax formalism

- The modified affine Toda equation can be expressed as the zero-curvature condition: $[\partial+A, \bar{\partial}+\bar{A}]=0$

$$
\begin{aligned}
A & =\frac{\beta}{2} \partial \phi \cdot H+m e^{\lambda}\left\{\sum_{i=1}^{r} \sqrt{n_{i}^{\vee}} E_{\alpha_{i}} e^{\frac{\beta}{2} \alpha_{i} \phi}+p(z) \sqrt{n_{0}^{\vee}} E_{\alpha_{0}} e^{\frac{\beta}{2} \alpha_{0} \phi}\right\}, \\
\bar{A} & =-\frac{\beta}{2} \bar{\partial} \phi \cdot H-m e^{-\lambda}\left\{\sum_{i=1}^{r} \sqrt{n_{i}^{\vee}} E_{-\alpha_{i}} e^{\frac{\beta}{2} \alpha_{i} \phi}+\bar{p}(\bar{z}) \sqrt{n_{0}^{\vee}} E_{-\alpha_{0}} e^{\frac{\beta}{2} \alpha_{0} \phi}\right\}
\end{aligned}
$$

λ : spectral parameter

- linear problem: $(\partial+A) \Psi=0$ and $(\bar{\partial}+\bar{A}) \Psi=0$.
- gauge transformation: $\Psi \rightarrow U \Psi, A \rightarrow U A U^{-1}+U \partial U^{-1}$

Example: modified sinh-Gordon equation: $A_{1}^{(1)}$

modified Sinh-Gordon equation [Lukyanov-Zamolodchikov 1003.5333]

$$
\partial_{z} \partial_{\bar{z}} \phi-e^{2 \phi}+p(z) \bar{p}(\bar{z}) e^{-2 \phi}=0, \quad p(z)=z^{2 M}-s^{2 M}
$$

- zero curvature condition $[\partial+A, \bar{\partial}+\bar{A}]=0$

$$
A=\left(\begin{array}{cc}
\frac{1}{2} \partial \phi & -e^{\lambda} e^{\phi} \\
p(z) e^{\lambda} e^{\phi} & -\frac{1}{2} \partial \phi
\end{array}\right), \quad \bar{A}=\left(\begin{array}{cc}
-\frac{1}{2} \bar{\partial} \phi & -e^{-\lambda} e^{\phi} \\
\bar{p}(\bar{z}) e^{-\lambda} e^{\phi} & \frac{1}{2} \bar{\partial} \phi
\end{array}\right)
$$

- asymptotic behavior of $\phi(z, \bar{z})$ at $\rho \rightarrow 0, \infty\left(z=\rho e^{i \theta}\right)$
- $\phi(\rho, \theta) \rightarrow M \log \rho(\rho \rightarrow \infty)$
- $\phi(\rho, \theta) \rightarrow \ell \log \rho(\rho \rightarrow 0)$

We can introduce a new parameter ℓ for the boundary condition at $\rho=0$.

linear problem and its asymptotic solutions

- linear problem $(\partial+A) \Psi=(\bar{\partial}+\bar{A}) \Psi=0$
- linear problem is invariant under Symanzik rotation $\Omega: \theta \rightarrow \theta+\frac{\pi}{M}, \lambda \rightarrow \lambda-\frac{i \pi}{M}$
- At $\rho \rightarrow \infty$, the subdominant solution is

$$
\Psi \sim\binom{e^{\frac{i M \theta}{2}}}{e^{-\frac{i M \theta}{2}}} \exp \left(-\frac{2 \rho^{M+1}}{M+1} \cosh (\lambda+i(M+1) \theta)\right)
$$

- $\rho \rightarrow 0$ basis $\Psi_{+}(\rho, \theta \mid \lambda) \rightarrow\binom{0}{e^{(i \theta+\lambda) \ell}}, \Psi_{-}(\rho, \theta \mid \lambda) \rightarrow\binom{e^{(i \theta+\lambda) \ell}}{0}$

$$
\Psi=Q_{-}(\lambda) \Psi_{+}+Q_{+}(\lambda) \Psi_{-}
$$

$Q_{ \pm}(\lambda)$ defines the Q-function satisfying the Bethe ansatz equation.

- T-functions and the Y -functions are also defined. They satisfy the D-type Y-system.

From MShG to ODE

- Take the light-cone limit $\bar{z} \rightarrow 0$. The linear system reduced to a holomorphic differential equation. $\left(\partial+A_{z}\right) \Psi=0$.
- Under the gauge transformation by $U=\operatorname{diag}\left(e^{\phi}, e^{-\phi}\right)$, it becomes

$$
\left(\partial_{z}+\tilde{A}_{z}\right)\binom{\psi_{1}}{\psi_{2}}=0, \quad \tilde{A}_{z}=\left(\begin{array}{cc}
\partial \phi & e^{\lambda} \\
p(z) e^{\lambda} & -\partial \phi
\end{array}\right)
$$

- linear system \Longrightarrow ODE (Miura transformation)

$$
\left[\left(\partial_{z}-\partial_{z} \phi\right)\left(\partial_{z}+\partial_{z} \phi\right)-e^{2 \lambda} p(z)\right] \psi_{1}(z)=0
$$

- conformal limit:
$z \rightarrow 0, \lambda \rightarrow \infty$ with fixed $x=z e^{\frac{\lambda}{M+1}}, E=s^{2 M} e^{\frac{2 \lambda M}{1+M}}, \phi \sim \ell \log x$

$$
\left[-\left(\partial_{x}-\frac{\ell}{x}\right)\left(\partial_{x}+\frac{\ell}{x}\right)+x^{2 M}\right] \psi=\left[-\partial_{x}^{2}+\frac{\ell(\ell+1)}{x^{2}}+x^{2 M}\right] \psi=E \psi
$$

This is the ODE of [Dorey-Tateo, BLZ]

ODE/IM correspondence for $\hat{\mathfrak{g}}^{\vee}$ modified affine Toda field equations
ODE

$\operatorname{BAE} U_{q}(\hat{\mathfrak{g}})$
\Longleftrightarrow \square
ODE/IM
\Uparrow Conformal limit
介 UV limit

Linear problem of modified affine Toda massive
 equation $\hat{\mathfrak{g}}^{\vee}$ with $p(z)=z^{h M}-s^{h M}$

Langlands Duality: [Masoero-Raimondo-Valeri, KI-Locke] The modified affine Toda equation for the Langlands dual $\hat{\mathfrak{g}}^{\vee}$ corresponds to the \mathfrak{g}-type Bethe ansatz equation [Reshetikhin-Wiegmann, Kuniba-Suzuki].

- $\hat{\mathfrak{g}}^{\vee}=\hat{\mathfrak{g}}$ for $\hat{\mathfrak{g}}=A_{r}^{(1)}, D_{r}^{(1)}, E_{r}^{(1)}, A_{2 r}^{(2)}$
- $\left(B_{r}^{(1)}\right)^{\vee}=A_{2 r-1}^{(2)},\left(C_{r}^{(1)}\right)^{\vee}=D_{r+1}^{(2)},\left(F_{4}^{(1)}\right)^{\vee}=E_{6}^{(2)},\left(G_{2}^{(1)}\right)^{\vee}=D_{4}^{(3)}$

ODE for affine Lie algebras

[KI-Locke,1312.6759] (ABCD type:
[Dorey-Dunning-Masoero-Suzuki-Tateo 2006])

$A_{r}^{(1)}$	$D(\mathbf{h}) \psi=\left(-m e^{\lambda}\right)^{h} p(z) \psi$
$D_{r}^{(1)}$	$D\left(\mathbf{h}^{\dagger}\right) \partial^{-1} D(\mathbf{h}) \psi=2^{r-1}\left(m e^{\lambda}\right)^{h} \sqrt{p(z)} \partial \sqrt{p(z)} \psi$
$B_{r}^{(1)}$	$D\left(\mathbf{h}^{\dagger}\right) \partial D(\mathbf{h}) \psi=2^{r}\left(m e^{\lambda}\right)^{h} \sqrt{p(z)} \partial \sqrt{p(z)} \psi$
$A_{2 r-1}^{(2)}$	$D\left(\mathbf{h}^{\dagger}\right) D(\mathbf{h}) \psi=-2^{r-1}\left(m e^{\lambda}\right)^{h} \sqrt{p(z)} \partial \sqrt{p(z)} \psi$
$C_{r}^{(1)}$	$D\left(\mathbf{h}^{\dagger}\right) D(\mathbf{h}) \psi=\left(m e^{\lambda}\right)^{h} p(z) \psi$
$D_{r+1}^{(2)}$	$D\left(\mathbf{h}^{\dagger}\right) \partial D(\mathbf{h}) \psi=2^{r+1}\left(m e^{\lambda}\right)^{2 h} p(z) \partial^{-1} p(z) \psi$
$A_{2 r}^{(2)}$	$D\left(\mathbf{h}^{\dagger}\right) \partial D(\mathbf{h}) \psi=-2^{r} \sqrt{2}\left(m e^{\lambda}\right)^{h} p(z) \psi$
$G_{2}^{(1)}$	$D\left(\mathbf{h}^{\dagger}\right) \partial D(\mathbf{h}) \psi=8\left(m e^{\lambda}\right)^{h} \sqrt{p(z)} \partial \sqrt{p(z)} \psi$
	$D\left(\mathbf{h}^{\dagger}\right) \partial D(\mathbf{h}) \psi+(\omega+1) 2 \sqrt{3}\left(m e^{\lambda}\right)^{4} D\left(\mathbf{h}^{\dagger}\right) p(z)$
$D_{4}^{(3)}$	$-(\omega+1) 2 \sqrt{3}\left(m e^{\lambda}\right)^{4} p D(\mathbf{h})-8 \sqrt{3} \omega\left(m e^{\lambda}\right)^{3} D\left(-h_{1}\right) \sqrt{p} \partial \sqrt{p} D\left(h_{1}\right)$
	$\left.+(\omega-1)^{3} 12\left(m e^{\lambda}\right)^{8} p \partial^{-1} p\right\} \psi=0$

$D(h):=\partial+\beta h \cdot \partial \phi$
$D(\mathbf{h})=D\left(h_{r}\right) \cdots D\left(h_{1}\right), D\left(\mathbf{h}^{\dagger}\right)=D\left(-h_{1}\right) \cdots D\left(-h_{r}\right)$ for $\mathbf{h}=\left(h_{r}, \cdots, h_{1}\right)$ set of weight vectors for the fundamental representation of \mathfrak{g}.

ODE/IM correspondence and the Argyres-Douglas Theory

The Argyres-Douglas Theory
[Argyres-Douglas 1995, Argyres-Plesser-Seiberg-Witten, Eguchi-Hori-KI-Yang]

- strongly coupled $\mathrm{N}=2$ SCFT in four dimensions
- mutually non-local monopole and dyons are both massless
- no microscopic Lagrangian description
- The curve of the AD theory is realized by degeneration of the SW curve ex. $S U(3)$ SW curve: genus two Riemann surface \Longrightarrow small+big torus
$G=A D E$ type SW theory:
- The SW curve is the spectral curve of periodic affine Toda lattice based on $\left(G^{(1)}\right)^{\vee}$. [Gorsky et al., Martinec-Warner]

$$
z+\frac{\mu^{2}}{z}=W_{G}\left(x, u_{1}, \cdots, u_{r}\right), \quad \lambda_{S W}=x \frac{d z}{z}
$$

$$
W_{A_{r}}=x^{r+1}-u_{2} x^{r-1}-\ldots-u_{r+1}
$$

- The AD point of the theory is realized at

$$
u_{1}=\ldots=u_{r-1}=0, \quad u_{r}= \pm 2 \mu
$$

- rescaling the variables (q_{i} : exponents of G), $\epsilon \rightarrow 0$

$$
u_{i}=\epsilon^{q_{i}} \rho_{i}(i=1, \ldots, r-1), \quad u_{r}=+2 \mu+\epsilon^{q_{r}}
$$

The SW curve of the AD theory (also rescaling of x, z)

$$
\xi^{2}=W\left(x, \rho_{1}, \ldots, \rho_{r-1}, 1\right), \quad \lambda_{S W}=\xi d x
$$

$$
\xi=\sqrt{z}+\frac{\mu}{\sqrt{z}}
$$

Classification of AD theories

- periodic Toda lattice $\left(A_{1}, G\right)$:

The SW curve : $x^{2}=W_{G}\left(z, u_{i}\right)$

- hypersurface singularity in the type IIB setup.
- $\left(G, G^{\prime}\right)$ AD theory [Cecotti-Neitzke-Vafa 1006.3435]

$$
\begin{gathered}
f_{G}\left(x_{1}, x_{2}\right)+f_{G^{\prime}}\left(x_{3}, x_{4}\right)=0 \\
f_{A_{r}}(x, y)=x^{2}+y^{r+1}, f_{D_{r}}=x^{r-1}+x y^{2}, f_{E_{6}}=x^{3}+y^{4}
\end{gathered}
$$

- Duality: $\left(G, G^{\prime}\right) \sim\left(G^{\prime}, G\right),\left(A_{1}, E_{6}\right) \sim\left(A_{2}, A_{3}\right),\left(A_{1}, E_{8}\right) \sim\left(A_{2}, A_{4}\right)$
- Hitchin system with irregular singularity $\mathfrak{g}^{(b)}[k][\mathrm{Xie}$, Wang-Xie] For $b=h$ (Coxeter number)

$$
\mathfrak{g}^{(h)}[k]=\left(\mathfrak{g}, A_{k-1}\right)
$$

2d/4d correspondence

- 4d $\mathrm{N}=2$ central charge \leftrightarrow central charge of 2d chiral algebra [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees 1312.5344]

$$
c_{4 d}=-\frac{1}{12} c_{2 d}
$$

- Schur limit of 4d superconformal index =vacuum character of 2d chiral algebra
[Cordova-Shao 1506.00265]
- For the AD theory $\mathfrak{g}^{(b)}[k]$ the corresponding 2d theory is

$$
\mathcal{A}=\frac{\mathfrak{g}_{\ell} \times \mathfrak{g}_{1}}{\mathfrak{g}_{\ell+1}}, \quad \ell=-\frac{k h-b}{k}
$$

which is the $W \mathfrak{g}\left(p^{\prime}, p\right)=W \mathfrak{g}(b+k, b)$ minimal model. [Xie 1204.2270, Wang-Xie 1509.00847, Xie-Yan-Yau, 1604.02155]

SW theory in the NS limit of the Ω-bakground

- Let us consider $\mathcal{N}=2$ theory in the Nekrasov-Sahashvili limit $\left(\epsilon_{2} \rightarrow 0\right)$ of the Ω-background. ($\epsilon_{1}=: \epsilon$)
- the SW differential $\lambda=x \frac{d z}{z}=x d \xi(\xi=\log z)$ defines the symplectic structure

$$
d \lambda=d x \wedge d \xi
$$

In the NS background, the ϵ induces the quantization condition:

$$
\{x, \xi\}=1 \quad \Longrightarrow[\hat{x}, \hat{\xi}]=i \epsilon
$$

- The quantum spectral curve [Mironov-Morozov, ...]

$$
x^{2}-u-z-\frac{1}{z}=0 \Longrightarrow\left(-\epsilon^{2} \partial_{\xi}^{2}-u-2 \cosh \xi\right) \psi(\xi)=0
$$

$\log \psi(\xi)=\frac{1}{\epsilon} \int^{\xi} \lambda+\cdots$: deformed period \rightarrow Nekrasov partition function in the NS limit

AD theory in the NS limit of the Ω-bakground

- quantum spectral curve for $A D$ theories

$$
\xi^{2}=W_{G}(x, \rho), \quad \xi \rightarrow \epsilon \partial_{x}
$$

- quantization: the SW differential $\lambda=\xi d x$ defines the symplectic structure

$$
\begin{gathered}
d \lambda=d \xi \wedge d x \\
\{\xi, x\}=1 \quad \Longrightarrow[\hat{\xi}, \hat{x}]=i \epsilon
\end{gathered}
$$

- quantum SW curve

$$
\xi^{2}=x^{r+1}+\cdots \rightarrow\left(-\epsilon^{2} \partial_{x}^{2}+x^{r+1}+\cdots\right) \psi(x)=0
$$

ODE/IM correspondence and AD theory

- We consider the simplest example. The AD_{2} curve

$$
x^{2}=z^{2}+2 a, \quad \lambda=x d z
$$

the periods $\left(Z_{e}, Z_{m}\right)=\left(\int_{\gamma_{e}} \lambda, \int_{\gamma_{m}} \lambda\right)=2 \pi i\left(a, a_{D}\right)$.

- We compactify the theory on S^{1} with radius R. Then its moduli space has a hyper-Kähler structure parametrized by $\zeta \in C P^{1}$. The coordinates of the moduli space are

$$
\left(X_{e}, X_{m}\right)=\left(\exp \left(\frac{R Z_{e}}{\zeta}+R \bar{Z}_{e} \zeta\right)+\cdots, \exp \left(\frac{R Z_{m}}{\zeta}+R \bar{Z}_{m} \zeta\right)+\cdots\right)
$$

- The dual period X_{m} jumps along the positive or negative a / ζ-axis. Its dicontinuity is captured by the A_{1}-type TBA equations [Gaiotto-Moore-Neitzke]
- The conformal limit $R \rightarrow 0, \zeta \rightarrow 0$ with fixed $\epsilon=\frac{R}{\zeta}$ $X_{m}=\exp \left(\frac{2 \pi i Z_{m}}{\epsilon}\right)$ satisfies the massless A_{1}-type TBA equation.

$$
\log X_{m}=\frac{Z_{m}}{\epsilon}+\frac{\epsilon}{\pi i} \int_{\ell_{-\gamma_{e}}} \frac{d \epsilon^{\prime}}{\left(\epsilon^{\prime}\right)^{2}-\epsilon^{2}} \log \left(1+e^{\frac{-2 \pi i a}{\epsilon^{\prime}}}\right)
$$

- Gaitto [1403.6137] has shown that the TBA system for AD_{2} model can be obtained from the oper

$$
x^{2}=z^{2}+2 a \underset{x \rightarrow \epsilon \partial_{z}}{ }\left(-\epsilon^{2} \partial_{z}^{2}+z^{2}+2 a\right) \psi(z)=0
$$

- $z=\sqrt{\epsilon} x$ and $2 a=-\epsilon E$

$$
\left(-\partial_{x}^{2}+x^{2}-E\right) \psi(E)=0
$$

- the dual coordinate X_{m} is identified with the T-function

$$
X_{m} \sim T(E)
$$

- [Cecotti-del Zotto-Vafa, 1006.4708] [Cecotti-del Zotto 1403.7613] From the BPS spectrum analysis of the AD theory, one finds the the ADE type Y-system [Zamoldchikov] appears.
- Q: What is the quantum spectral curve for the $A D E$-type AD theory?
- The light-cone limit of the linear problem associated with the modified affine Toda field equation for $\hat{\mathfrak{g}}=A D E$ gives the first order linear-differential equation:

$$
\left[\partial_{z}+A_{z}\right] \psi(z)=0
$$

We propose that this can be regarded as the quantum spectral curve of the AD theory of $\left(A_{1}, \mathfrak{g}\right)$ type for $p(z)=z^{2}-E$.

For $G=A_{r}$-type, we have the ODE

$$
\left(\partial^{r+1}-z^{2}+E\right) \psi_{1}(z)=0
$$

- Using the ODE/IM correspondence, we can derive the T and Y-system of the A_{r}-type [CZV]. One can compute the effective central charge from the TBA equations [CS].
- The BAE leads to the NLIE equations [Dorey-Tateo]. We can compute the central charge.
- Spectral duality $\left(A_{1}, A_{r}\right) \leftrightarrow\left(A_{r}, A_{1}\right)$ can be seen from the Fourier transformation.

$$
\left((i k)^{r+1}-\frac{\partial^{2}}{\partial k^{2}}+E\right) \tilde{\psi}_{1}(k)=0
$$

- Dorey-Dunning-Tateo [0712.2010] argued that he ODE

$$
\left(-\partial_{x}^{2}+x^{2 M}-E\right) \psi(x, E)=0
$$

corresponds to the non-unitary minimal model $M_{2,2 M+2}$ with central charge

$$
c=1-\frac{6 M^{2}}{M+1}
$$

perturbed by the operator $\phi_{1, M}$ with conformal dimension

$$
\Delta_{1, M}=\frac{1-4 M^{2}}{16(M+1)}
$$

Note that for general ℓ, the effective central charge becomes
$c_{e f f}=c-24 \Delta=1-\frac{6\left(\ell+\frac{1}{2}\right)^{2}}{M+1}$

- The $M_{2, M}$ is realized by the fractional coset CFT:

$$
\frac{s u(2)_{L} \times s u(2)_{1}}{s u(2)_{L+1}}, \quad L=\frac{1}{M}-2
$$

For the ODE and the BAE, Dorey et al. suggest that the ODE for $\mathfrak{g}=A B C D$ with

$$
p(x)=x^{h^{\vee} M}-E
$$

corresponds to the coset model

$$
\frac{\hat{\mathfrak{g}}_{L} \times \hat{\mathfrak{g}}_{1}}{\hat{\mathfrak{g}}_{L+1}}=W \mathfrak{g}\left(h^{\vee} M+h^{\vee}, h^{\vee}\right), \quad L=\frac{1}{M}-h^{\vee}
$$

perturbed by the certain relevant operator.
The central charges agree with those predicted by the 2d/4d correspondence. [Cordova-Shao, Xie-Yan-Yau 1604.02155]

Conclusions and Outlook

- The ODE/IM correspondence between affine Toda field equations $\hat{\mathfrak{g}}^{\vee}$ and the $\hat{\mathfrak{g}}$ integrable models. (Langlands duality)
- The ODE/IM correspondence describes the relation between 4d SCFT (quantum spectral curve) and the related 2d conformal field theories (non-unitary W-minimal model).
- D_{r} and E_{r} spectral curve and the AD theory work in progress
- The ODE/IM coorespondence would be useful to compute the non-perturbative correction to the deformed prepotential at strong coupling from the integrable model point of view.

