Collaboration Spotting: Big Data Visual analytics

"The analysis of large graphs plays a prominent role in various fields of research and is relevant in many important application areas. Effective visual analysis of graphs requires appropriate visual presentations in combination with respective user interaction facilities and algorithmic graph analysis methods." [Landesberger].

Overall presentation

A. Agocs, D. Dardanis, R. Forster, M. Gazzari, J.-M. Le Goff, X. Ouvrard **CERN**

[Landesberger]: Visual Analysis of large graphs: State-of-the-art and future research challenges. T. Landesberger et al. Computer Graphics Forum, Wiley, 2011, 30 (6), pp. 1719-1749

Background

- Collaboration Spotting (CS) is a graph-based interactive visualisation tool for multi-dimensional data networks
 It aims at evolving towards a for visual analytics of Big Data.
- CS is particularly efficient in performing visual queries on complex and large multi-dimensional data networks
- Data Networks are stored in Neo4j Graph Databases
- CS intends to maximize human visual perception of the content of multi-dimensional data networks
- The current implementation of CS addresses
 - Publications/Patents (Technology monitoring via semantic searches)
 - LHCb process data
 - CERN procurement data

Big Data Analytics Cycle (Today)

VISION → Expert at the centre of the cycle

ho Data scientists to enable experts to perform analytics by themselves m 4

Big Data is organised in networks

Big Data is distributed

- Document systems with data and metadata in Database
- Database tables with metadata in schema

Big Data is strongly interconnected

- Networks are not always materialised due to the distributed nature of data sources
- Ex: Publications and patents metadata

Networks in LHCb Neo4J DB & related schema for dependency data

Label: Network dimension Reachability graph: Graph of connected labels (Schema)

Graph visualisation features

Maximizing human understanding

- Selecting network dimensions
- Traversing network dimensions
- Graphical queries
- Time/Frequency evolution

Enhancing reasoning

- Viewing multiple data sources
- Looking for collaborations
- Sorting data
- Contextual visualisation & analytics

Navigation with CS eases the visual perception of the database content

6 relationships (completed with 693 additional relationships)

EX: Vertex x86_64-slot-goc46-opt in Neo4j, $\odot \rightarrow$ Same in CS

Sorting is particularly easy with CS

Component view sorted by size

Using the timeline

Component view sorted by size

A single platform for visual analytics of multi-dimensional data networks

Collaboration Spotting Framework

The project follows the proposed conceptual framework of D. Sacha et al^{*}.

*Human-Centered Machine Learning Through Interactive Visualization: Review and Open Challenges Dominik Sacha, Michael Sedlmair, Leishi Zhang, John Aldo Lee, Daniel Weiskopf, Stephen North, Daniel Keim

CS analytics sequence

Pre- processing	 Data Source → Graph DB 	
Data Analysis	 Process Collaborations 	
Community Analysis	 Process Communities 	
Visual Analysis	 Processing on graphs 	

Vocabulary

Data

- Any set of labelled vertices and relationships in GDB
- A data instance is a labelled vertex or relationship in GDB

Visualisation Data

- Any set of labelled vertices and relationship in GDB
- A visual data instance is a labelled vertex or relationship in GDB

dimension (in data network)

A label of a vertex or a relationship

Collaborations

- Results of the analysis of data instances
- A collaboration is a collection of visualisation data instances meeting a criteria of the data dimensions
- A collaboration corresponds to one and only one data instance
- There is a set of collections per visual dimension

Community

• Collection of visualisation data instances meeting a criteria of the visualisation dimensions

Pre-processing

Analysis of data source structure and content

- Ex: RDBMS: process schema
- Ex: Semi-structured data: Process tags
- Ex: Graph DB: Vertices and Relationships

Reachability graph

- Schema of graph DB describing the content of the subset of data source
- Schema of the multi-dimension data network resulting from the merging of various data sources

Pre-processing: Data source → Multi-dimensional data network

Select Page

 \sim

Save to EndNote online < Add to Marked List

Reachability Graph: Graph of data types

(Cty)

JCat: Journal category, Kw: Keyword, Org: Organisation, Cny: Country, Cty: City

Document metadata

(Cny)

(Org)

Graph of Metadata / Data

S: Categories, A: Pub/Pat, K: keywords, O: Organisations, C: Countries, L: Cities

Example: Merging data sources

Reachability Graph (Schema): Graph of linked datatypes **Dimension**: a node in the Reachability Graph (a datatype)

Construct reachability graph

Data analysis

Processing specific to a particular dataset

Publications/Patents
 → Semantic search

Results added to the Graph DB

Creation of new labels (if needed)

Compute Collaborations according to criteria

- Ex: Co-publishing/co-patenting
 - Collaborations of organisation, KW, Sub Cat, etc. for each Pub/Pat
- Ex: Synonyms
 - Collaborations of KW.

Community Analysis

Build communities from collaborations according to criteria

- Communities = how collaborations are organised and interconnected
- Results: Connected Components as a partition of the set of vertices
- Ex: Pub: Louvain → Organisations publishing more often together
- Ex: Tech: Louvain → Technologies having more papers in common

Labelling of communities according to criteria

- Ex: Pub: Community = Organisations with common pub/pat
- Ex: Tech: semantic search → Community = technologies corresponding to pub/pat having common terms

Build compound graph information

All info on vertices/edges and collaborations

Compound graph(view)

- Combination of a tree and a graph
 - Tree: Hierarchy = Vertex → Cluster mapping after applying Community Analysis
 - Layers:
 - Vertex layer: Multi-dimensional collaboration layout
 - Containing all vertices and edges from collaborations according to a selected view
 - Cluster layer: Community layout
 - Containing all communities represented as coloured clusters and cluster interconnections (edges)
 - Root Layer: Connected component layout
 - One vertex hierarchically linked to all the linked clusters per connected component.

Tree: Hierarchy Vertices to Communities

Ex: Organisation landscape for medipix technology

Multi-layer information

Technology: Medipix/Sociogram

Layers in Compound Graph

Vertex layer

- Graph of labelled vertices from selected dimensions for visualisation
- Communities as collections of labelled vertices (colours)
- Collaborations representing data as hyper-edges
- Collaborations representing collection of labelled vertices as vertices

Community layer

• A vertex represents a community, i.e. vertices link together

Connected Component layer (Root)

• A vertex represents a connected component i.e. all the communities linked together in the community layer

Visual representation of data, collaborations, communities

Visual dimensions (Data for visualisation)

- Vertices → data instances
- Vertex information → Information on collaborations obtained from the analysis of data

Collaborations

- Visual data → vertices
- Data for analysis → hyper-edges

Communities

- Visual data → Clusters, a colour represents a cluster
- Data for analysis \rightarrow content of vertices in clusters

Visual Analysis

Default compound graphs

- Vertex layer
 - Colours: communities
 - Sizes: Proportional to |data instances|
 - Ex: Nb of pub/pat

Process graph parameters (colour, size, shape, labels)

- Using data and/or attributes in vertices,
 - Ex: Red for companies and Blue for institutions
 - Ex. CERN procurement: Well balanced vs poorly balanced countries
- Using collaborations resulting from the analysis of visual data
 - Replace vertices with collaborations

Users

Data Scientist

- Manages Reachability Graph
- Defines/Specifies Expert's options and r/w access:
- Maintains/updates CS environment incl. GraphDB (network)
- Manages/Implements analytics modules

Expert

- Configures his personal Graph environment
 - Selects views (one visual dimension = one view)
 - Combines views
 - Specifies his analysis options out of the system possibilities
 - Specifies his community analysis options
 - Criteria to compute communities
 - Specifies his visual analysis options for communities
 - Meaning of vertex size, colour, etc.
 - Specifies his graph options

Setting up user visual environment

Reachability Graph → Navigation graph

Subset of DB schema optimized for navigation purposes

Visual dimensions (user selection)

•Organisations, People, Countries, Software components, activity codes, etc.

Data Dimensions

Publications, patents, projects, supplier records, UNICRI specific data records, etc.

Entry graph (user specified)

- Visual dimension of the front graph
- Technology, Processing Pass Descriptions, Procurement Data

Construct reachability graph

Blue edges added to support navigations from entry graph

CS supported Graph Visual representations

- Static graph with timeline window
- Node-link using different layout techniques
 - Clique representation (currently available)
 - Force Atlas (currently available)
 - Circular representation
 - Extra node representation (hyper-graph)
 - Force Atlas
 - Circular representation

Entry graph in LHCb

1 vertex (all PPD) and **Navigation options** (as defined in the navigation graph)

Components

Applications

Frameworks

Platforms

Steps

9 • •	1 • 98 Layout - MC/Real Data - Modularity Data	(?)
		Ŭ
Sporting		
lan: Sten-landscape		
2016		
umber of Steps: 2016	Step 763	
lusters : 1	Stop 405	
Step Path		
	Step 515 Step 1799	
All + Export	Step 543	
Step 1057		
Step 1058		
Step 1077		
Step 10778		
Step 1079	Step 2360	
Step 1080		
Step 1099		
Step 1158	Sign 1738	
Step 1159	Stop 560	· Platform
Step 1160	Step 560 Step 777	• AllPPD
Step 1161	Step 903 Step 269	- Application
Step 1162	Step 2340	Processing Pass Description
Step 1163		Sten
Step 123714		Framework
Step 123715		Component
Step 123814	Step 193 Step 918	. Component
Step 123856		
Step 123857		
Step 123903	la service de la construction de la	
Step 123905	Step 268	
Step 123906	n an	
Step 123954		
Step 123956		
Step 123957		
Step 124020		
Step 124022		
Step 124098		
Step 124100		Powered by:
Step 124120		· uncica by:
Step 124122		CERN
Step 124234	2009 2015	

PPD(Modularity)

PPD(Data)

CERN

Blue: Real Data Red: Monte Carlo

Entry graph in Tech monitoring

A Vertex = a semantic search

Graph navigation operations

Hovering:	 Highlight clusters
Left click:	Node egocentric view
Right click:	 Access to other dimensions from a node
Right pane	 Navigation across dimensions
Ctrl click:	 Multiple vertex selection
Shift click	Cluster selection

Node-based interactivity Operations can be combined

Hovering:

Highlight clusters

Left click:

Node egocentric view

Right click: • Access to other dimensions from a node selection

Right pane

Navigation across dimensions

Ctrl click

Multiple vertex selection

Shift click

Cluster selection

Conclusion

CS V2 (Current version) demonstrated on

- Publications, patents
- CERN procurement data
- LHCb computing process data
- Deployable to other data sources

CS V3 Platform supporting

- Data Manager / Expert concept
- Full data analysis chain
- Compound graph navigation-based mechanisms

Thank you for your attention!