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Since PSR J1614-2230 and PSR J0348+0432, the discussion about exotic
dense matter (beyond npep:) started to be interesting.



Dense-matter phase transitions and M(R)
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Every softenning in the EOS (e.g., creation of a new phase) leads to lowering
the Mmax. There is a critical softening that leads to an instability (Seidov
1971),

e.g. critical density jump between the phases
Aerit = pz/p1 > %(1 + P12/p102)
(detached branch forming the third family of NS, twins...)



High-mass quark-core twins
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* Exotic quark phase is related to massive

NSs.
* ,A new quark-hadron hybrid equation of

state for astrophysics - I. High-mass twin
compact stars”, Beni¢ et al. (2015)
arXiv:1411.2856
* RMF model with density-dependent
coupling constants and excluded volume
corrections for the hadronic phase,
* Nambu—Jona-Lasinio with higher order
repulsive vector corrections for the quark

phase.

* Topic of this talk - if we accept that such
EOS is possible, what should we expect
from astrophysical observations? (details

in arXiv:1608.07049)



Current NS radii measurements
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Haensel et al. (2016) arXiv:1601.05368:
Constraints from pulse profiles from

16

rotation-powered MSP (RP-MSP), bursting

NS (BNS), quiestent X-ray transients

(QXT).
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(Matthias Hempel website)



Searching for limits: parametric EOSs with phase transitions
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Turczanski et al. (2016, in preparation):
density jumps, causal, Mmax > 2 M.

Realistic crust + piecewise polytropes with



Rotating NS
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Rotation on the M(R) diagram
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* S: static configurations (TOV),

* K: "Keplerian” (mass-shedding)
configuration - maximally-rotating,
rigid stars at a given mass,
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* in cyan: the instability line (star
loses stability w.r.t. axisymmetric
oscillations)



3+1 formalism of general relativity (LORENE, www.lorene.obspm.fr)

Hypersurfaces of constant time ¥;,
each with its own coordinate system.

t+8t  3-metricinducedon ;: h=g+n®n,
where n in normal to X;.

X

t

xi = const.
Evolution is described by auxiliary parameters:
* Time “lapse” N, n = NV,
* space “shift’ 3 = —h - ¢

General metric:
guvdxtax” = —(N? — B;3")d? — 28;dt dx’ 4 hydx' dx/

Conformally flat metric h = Wn, where 7 is flat 3-metric. With a particular
choice of the conformal factors A and B:

, A4
Gapdx®dx? = —N2df? + A*B2r? sin® 6(dp + N?dt)? + E(drz + r2d6?)



Global quantities (LORENE/rotstar)

Using the property of asymptotic flatness:
* Total mass-energy (gravitational potential v(r, 6)|—+- — 0, leading term
v(r, ) ~ —=M/r):

NAS ;2
M:= / (2T — TG )N € Vhdx® = / 5 <E + S+ NN¢P4>> r? sin §drdfde
P
* Number of particles inside the star:

6
A = 7/ nun, v hdx® :/'%Fnbr2 sin 0drdod¢
X

* Total angular momentum: Leading term in frame-dragging
Ne(r, 0)|r—to0 ~ —2J/r%):

AG
J = —/ T x?Vhdx® = / E,o(,)r2 sin 0drdod¢
P

* Circumferential radius:
Req - Az(req7 7r/2)B(r9‘11 7T/2)feq

Accuracy check: projection of Einstein equations on X, — 2-dimensional virial identity
(Bonazzola & Gourgoulhon 1994).



The back-bending phenomenon
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Originally, the idea comes from nuclear physics:
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For NS, back-bending is the temporary spin-up of
the star while it loses the angular momentum due
to the change of its internal structure (e.g., the

phase transition).
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Stability indicators: J and M, (not / and f)

Sufficient condition for instability in rotating stars: Sorkin (1981, 1982),

Friedman et al. (1988)
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* Change in stability corresponds to extremum
of M or M, at fixed J, or to extremum of J at
fixed either M or Mp:

oMp\ oJ _
(5),~o (5),-°
* Conjecture: character of stability persists for
all rotation rates (A&A 450, 2006, 747)

* Back-bending is related to the existence of a
minimum of M, along f = const. sequence
and does not indicate the instability.



f = const. curves on Mp(R) plane
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— Dashed lines - back-bending is present (NS spins-up while monotonically
losing angular momentum)



J = const. curves, loss of stability and critical angular momentum J
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Analysis of J = const. sequences: stars with too much angular momentum
(e.g., spun-up by accretion) end up in the instability.



J = const. curves on My(R) plane
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Red region - strong phase-transition instability,

Blue region - unstable w.r.t axisymmetric oscillations,

Grey region - no back-bending,

Green region - stable twin branch reached after the mini-collapse from the tip
of J = const. curve, along M, = const.



My = const. curves on J(f) plane
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For NSs with measured gravitational mass M and frequency - possibility to
put limits on M, J, moment of inertia /, core EOS composition etc.



Energy release (A&A 479, 2008, 515)
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Strong phase transition if J=01,...,0.8 x GM? /c,
ps/px > §(1+ Po/pyc®) Energy release E.. = (M — M*)c?,

Kinetic energy AT =T —T.



Energy release in case of DD2-EV 7, = 0.12, n4, = 5 EOS
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Left panel: energy release (difference in the gravitational mass) vs J of the
configuration entering the strong phase-transition instability.

Right panel: spin-up Af (difference between the final and initial spin
frequency) against the spin frequency of the initial configuration.



Burst-like GW emission (MNRAS 502, 2009, 605)
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Time evolution of a dynamical
mini-collapse induced by a phase
transition (simulations with the
CoCoNuT code)
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Summary/outlook

Strong phase-transition instability in the EOS

* bypasses the majority of back-bending regions,

* provides a "natural” spin frequency cut-off at some moderate (but >716
Hz) frequency,
* resembles Fast Radio Burst 'blitzar’ engine (Falcke & Rezzolla 2014):

* catastrophic mini-collapse to the second branch (or to a black hole),
* massive rearrangement of the magnetic field — energy emission.

Other astrophysically-interesting questions:
* Way to constraint on M, J, /, core EOS etc.,
* Specific shape of NS-BH mass function (no mass gap?)
— population of massive, low B-field NSs (radio-dead?),
— population of massive, high B-field NSs (collapse enhances the field?),

* Characteristic burst-like signature in GW emission during the
mini-collapse.



