
Observational implications of dense
matter phase transitions for the

rotational evolution of neutron stars

Michał Bejger
Nicolaus Copernicus Astronomical Center, PAS

Wigner Theoretical Physics Seminar
Budapest, 7.10.16



Since PSR J1614-2230 and PSR J0348+0432, the discussion about exotic
dense matter (beyond npeµ) started to be interesting.



Dense-matter phase transitions and M(R)

Every softenning in the EOS (e.g., creation of a new phase) leads to lowering
the Mmax . There is a critical softening that leads to an instability (Seidov
1971),

e.g. critical density jump between the phases
λcrit = ρ2/ρ1 >

3
2(1 + P12/ρ1c2)

(detached branch forming the third family of NS, twins...)



High-mass quark-core twins

? Exotic quark phase is related to massive
NSs.

? „A new quark-hadron hybrid equation of
state for astrophysics - I. High-mass twin
compact stars”, Benić et al. (2015)
arXiv:1411.2856
? RMF model with density-dependent

coupling constants and excluded volume
corrections for the hadronic phase,

? Nambu–Jona-Lasinio with higher order
repulsive vector corrections for the quark
phase.

? Topic of this talk - if we accept that such
EOS is possible, what should we expect
from astrophysical observations? (details
in arXiv:1608.07049)



Current NS radii measurements

Haensel et al. (2016) arXiv:1601.05368:
Constraints from pulse profiles from
rotation-powered MSP (RP-MSP), bursting
NS (BNS), quiestent X-ray transients
(QXT). (Matthias Hempel website)



Searching for limits: parametric EOSs with phase transitions
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Turczański et al. (2016, in preparation): Realistic crust + piecewise polytropes with
density jumps, causal, Mmax > 2 M�.



Rotating NS
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Rotation on the M(R) diagram

? S: static configurations (TOV),

? K: ”Keplerian” (mass-shedding)
configuration - maximally-rotating,
rigid stars at a given mass,

? in cyan: the instability line (star
loses stability w.r.t. axisymmetric
oscillations)



3+1 formalism of general relativity (LORENE, www.lorene.obspm.fr)

Hypersurfaces of constant time Σt ,
each with its own coordinate system.
3-metric induced on Σt : h = g + n⊗n,
where n in normal to Σt .

Evolution is described by auxiliary parameters:

? Time “lapse” N, n = N∇t ,

? space “shift” β = −h · ξ

General metric:
gµνdxµdxν = −(N2 − βiβ

i )dt2 − 2βidt dx i + hijdx i dx j

Conformally flat metric h = Ψη, where η is flat 3-metric. With a particular
choice of the conformal factors A and B:

gαβdxαdxβ = −N2dt2 + A4B2r2 sin2 θ(dφ+ Nφdt)2 +
A4

B2
(dr2 + r2dθ2)



Global quantities (LORENE/rotstar)

Using the property of asymptotic flatness:
? Total mass-energy (gravitational potential ν(r , θ)|r→+∞ → 0, leading term
ν(r , θ) ∼ −M/r ):

M :=

∫
Σt

(2Tµν − Tgµν)nµξν
√

hdx3 =

∫
NA6

B

(
E + Si

i +
2
N

Nφpφ

)
r2 sin θdrdθdφ

? Number of particles inside the star:

AB := −
∫

Σt

nunb

√
hdx3 =

∫
A6

B
Γnbr2 sin θdrdθdφ

? Total angular momentum: Leading term in frame-dragging
Nφ(r , θ)|r→+∞ ∼ −2J/r3):

J := −
∫

Σt

Tµνnµχν
√

hdx3 =

∫
A6

B
pφr2 sin θdrdθdφ

? Circumferential radius:

Req = A2(req, π/2)B(req, π/2)req

Accuracy check: projection of Einstein equations on Σφ → 2-dimensional virial identity
(Bonazzola & Gourgoulhon 1994).



The back-bending phenomenon

Originally, the idea comes from nuclear physics:

For NS, back-bending is the temporary spin-up of
the star while it loses the angular momentum due
to the change of its internal structure (e.g., the
phase transition).



Stability indicators: J and Mb (not I and f )

Sufficient condition for instability in rotating stars: Sorkin (1981, 1982),
Friedman et al. (1988)

? Change in stability corresponds to extremum
of M or Mb at fixed J, or to extremum of J at
fixed either M or Mb:(

∂Mb

∂λc

)
J

= 0,
(
∂J
∂λc

)
M

= 0,

? Conjecture: character of stability persists for
all rotation rates (A&A 450, 2006, 747)

? Back-bending is related to the existence of a
minimum of Mb along f = const . sequence
and does not indicate the instability.



f = const . curves on Mb(R) plane
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→ Dashed lines - back-bending is present (NS spins-up while monotonically
losing angular momentum)



J = const . curves, loss of stability and critical angular momentum J

Analysis of J = const . sequences: stars with too much angular momentum
(e.g., spun-up by accretion) end up in the instability.



J = const . curves on Mb(R) plane

Red region - strong phase-transition instability,
Blue region - unstable w.r.t axisymmetric oscillations,
Grey region - no back-bending,
Green region - stable twin branch reached after the mini-collapse from the tip
of J = const . curve, along Mb = const .



Mb = const . curves on J(f ) plane
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For NSs with measured gravitational mass M and frequency - possibility to
put limits on Mb, J, moment of inertia I, core EOS composition etc.



Energy release (A&A 479, 2008, 515)

Strong phase transition if
ρS/ρN > 3

2 (1 + P0/ρNc2)

Angular momentum
J = 0.1, . . . , 0.8×GM2

�/c,
Energy release Erel = (M −M?)c2,
Kinetic energy ∆T = T ? − T .



Energy release in case of DD2-EV η2 = 0.12, η4 = 5 EOS
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Left panel: energy release (difference in the gravitational mass) vs J of the
configuration entering the strong phase-transition instability.
Right panel: spin-up ∆f (difference between the final and initial spin
frequency) against the spin frequency of the initial configuration.



Burst-like GW emission (MNRAS 502, 2009, 605)

Time evolution of a dynamical
mini-collapse induced by a phase
transition (simulations with the
CoCoNuT code)



Summary/outlook

Strong phase-transition instability in the EOS
? bypasses the majority of back-bending regions,

? provides a ”natural” spin frequency cut-off at some moderate (but >716
Hz) frequency,

? resembles Fast Radio Burst ’blitzar’ engine (Falcke & Rezzolla 2014):
? catastrophic mini-collapse to the second branch (or to a black hole),
? massive rearrangement of the magnetic field→ energy emission.

Other astrophysically-interesting questions:
? Way to constraint on Mb, J, I, core EOS etc.,

? Specific shape of NS-BH mass function (no mass gap?)

→ population of massive, low B-field NSs (radio-dead?),

→ population of massive, high B-field NSs (collapse enhances the field?),

? Characteristic burst-like signature in GW emission during the
mini-collapse.


