Numerical Explorations of the Lattice Loop Equations

Peter Anderson with Martin Kruczenski

Purdue University
ander324@purdue.edu
August 5, 2016

Overview

(1) Lattice Gauge Theory
(2) Strong Coupling Expansion
(3) The Lattice Loop Equations
(4) Solutions of QCD_{2}
(5) Numerical methods in 4 d

6 SUSY on the Lattice

Lattice Gauge Theory

Recall: The Pure Yang-Mills Lagrangian

$\mathcal{L}=-\frac{1}{4 g^{2}} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)$
Where $\stackrel{F}{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i\left[A_{\mu}, A_{\nu}\right]$
and $A_{\mu}(x) \xrightarrow{\text { g.t. }} A_{\mu}^{\prime}(x)=\Omega(x) A_{\mu}(x) \Omega^{\dagger}(x)+i \Omega(x) \partial_{\mu} \Omega^{\dagger}(x)$

$$
\begin{gathered}
U_{\mu}(x)=\mathcal{P} e^{-i \int_{x}^{x+a \hat{\mu}} A \cdot d x} \\
U_{\mu}(x) \xrightarrow{\text { g.t. }} \Omega(x) U_{\mu}(x) \Omega^{\dagger}(x+a \hat{\mu})
\end{gathered}
$$

Lattice Gauge Theory

- The Gauge Fields live on the links of the Lattice in $\operatorname{SU}(N)$
- Continuum limit $(a \rightarrow 0)$ reproduces the Pure Gauge Action
- Methods of calculation include strong coupling expansion, perturbation theory, and Monte Carlo Simulations

$$
S=-\frac{N}{2 \lambda} \sum_{\mu \neq \nu, x} \operatorname{Tr}\left(U_{\mu \nu}(x)\right)
$$

Where, $U_{\mu \nu}(x)=U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)$ and $\lambda=g^{2} N$ is the 't Hooft coupling

$$
\begin{gathered}
\langle\mathcal{W}\rangle=\frac{1}{\mathcal{Z}} \int \prod_{x, \mu} d U_{\mu}(x) \frac{1}{N} \operatorname{Tr}\left(U_{\mu_{1}} \ldots U_{\mu_{n}}\right) \exp (-S) \\
\mathcal{Z}=\int \prod_{x, \mu} d U_{\mu}(x) \exp (-S)
\end{gathered}
$$

Strong Coupling Expansion

- This is in the limit of $\frac{N}{\lambda} \rightarrow 0$ and $g^{2} \rightarrow \infty$ which allows us to expand about the exponential in the path integral.

$$
e^{\frac{N}{2 \lambda} \sum_{p, x} \operatorname{Tr} U_{p}(x)}=1+\frac{N}{2 \lambda} \sum_{p, x} \operatorname{Tr} U_{p}(x)+\frac{1}{2}\left(\frac{N}{2 \lambda} \sum_{p, x} \operatorname{Tr} U_{p}(x)\right)^{2}+\ldots
$$

- Calculating the value of Wilson Loops then just becomes a matter of combinatorics.
- Unfortunately the strong coupling limit does not correspond with the continuum physics that we are interested in

Solution of the plaquette

The Haar measure is normalized such that

$$
\begin{aligned}
\int d U & =1 \\
\int d U U_{i j} U_{k l}^{\dagger} & =\frac{1}{N} \delta_{i l} \delta_{k j}
\end{aligned}
$$

We then find that to first order that

$$
\begin{aligned}
\left\langle\mathcal{W}_{\square}\right\rangle & =\frac{N}{2 \lambda} \int d U_{1 \ldots 4} \frac{1}{N} U_{i_{1} i_{2}}^{(1)} U_{i_{2} i_{3}}^{(2)} U_{i_{3} i_{4}}^{(3) \dagger} U_{i_{4} i_{1}}^{(4) \dagger} U_{j_{1} j_{2}}^{(4)} U_{j_{2} j_{3}}^{(3)} U_{j_{3} j_{4}}^{(2) \dagger} U_{j_{4} j_{1}}^{(1) \dagger} \\
& =\frac{1}{2 \lambda} \frac{1}{N^{4}} \delta_{i_{1 j} 1} \delta_{i_{2} j_{4}} \delta_{i_{2} j_{4}} \delta_{i_{3} j_{3}} \delta_{i_{3} j_{3}} \delta_{i_{4} j_{2}} \delta_{i_{4} j_{2}} \delta_{i_{1} j_{1}} \\
& =\frac{1}{2 \lambda}
\end{aligned}
$$

The Lattice Loop Equations

The dynamics of Yang-Mills theories are described by the Schwinger-Dyson equations

$$
-\nabla_{\mu}^{a b} F_{\mu \nu}^{b}(x) \stackrel{\text { w.s. }}{=} \hbar \frac{\delta}{\delta A_{\nu}^{a}(x)}
$$

The lattice loop equations are derived by performing a change of variables on a single link

$$
\begin{aligned}
& U_{\mu}(x) \rightarrow\left(1+i \epsilon_{\mu}(x)\right) U_{\mu}(x) \\
& U_{\mu}^{\dagger}(x) \rightarrow U_{\mu}^{\dagger}(x)\left(1-i \epsilon_{\mu}(x)\right)
\end{aligned}
$$

Where, ϵ_{μ} is a traceless, hermitian matrix. This results in the lattice version of the Schwinger-Dyson equations. (Migdal-Makeenko 1979)

$$
\left\langle-\delta_{\epsilon} S \mathcal{W}_{x}^{a b}+\delta_{\epsilon} \mathcal{W}_{x}^{a b}\right\rangle=0
$$

Derivation of Loop Equations

Varying the link $U_{\alpha}(x)$

$$
\begin{aligned}
\left\langle\frac { i N } { 2 \lambda } \operatorname { T r } \left(\sum_{\nu \neq \alpha} \epsilon_{\alpha}\{ \right.\right. & U_{\alpha} U_{\nu} U_{\alpha}^{\dagger} U_{\nu}^{\dagger}+U_{\alpha} U_{\nu}^{\dagger} U_{\alpha}^{\dagger} U_{\nu} \\
& \left.\left.-U_{\nu} U_{\alpha} U_{\nu}^{\dagger} U_{\alpha}^{\dagger}-U_{\nu}^{\dagger} U_{\alpha} U_{\nu} U_{\alpha}^{\dagger}\right\}\right) \mathcal{W}^{i j} \\
& \left.\quad+i \epsilon_{\alpha}^{i k} \mathcal{W}^{k j}+\sum_{n} \mathcal{W}^{i l} \epsilon_{\alpha}^{l k} \mathcal{W}^{k j}-\sum_{\bar{n}} \mathcal{W}^{i l} \epsilon_{\alpha}^{l k} \mathcal{W}^{k j}\right\rangle=0
\end{aligned}
$$

Isolating ϵ gives $\epsilon_{\alpha}^{l k} A_{i j}^{k l}=0$, resulting in

$$
A_{i j}^{k l}-\frac{a_{i j}}{N} \delta^{k l}=0
$$

The Lattice Loop Equations

Lattice Loop Equations

$$
\begin{aligned}
\frac{1}{2 \lambda}\left\langle\mathcal{W}_{\alpha \mu}\right\rangle+\left(1-\frac{1+n_{m}-\bar{n}_{m}}{N^{2}}\right. &)\langle\mathcal{W}\rangle \\
& +\sum_{m} \tau_{m}\left\langle\mathcal{W}_{n m} \mathcal{W}_{m n}\right\rangle-\frac{1}{2 \lambda}\left\langle U_{\alpha \mu} \mathcal{W}\right\rangle=0
\end{aligned}
$$

Where $\tau_{m}= \pm 1$ depending if the link is parallel or anti-parallel
Note: There was no restriction of the action or the choice of gauge throughout the derivation

Large- N limit of QCD

In the large- N limit the expectation value of the product of Wilson loops will factorize in the following manner. (Migdal 1980)

$$
\left\langle\mathcal{W}_{1} \mathcal{W}_{2}\right\rangle \rightarrow\left\langle\mathcal{W}_{1}\right\rangle\left\langle\mathcal{W}_{2}\right\rangle+\mathcal{O}\left(\frac{1}{N^{2}}\right)
$$

Lattice Loop Equation

$$
\frac{1}{2 \lambda}\left\langle\mathcal{W}_{\alpha \mu}\right\rangle+\langle\mathcal{W}\rangle+\sum_{m} \tau_{m}\left\langle\mathcal{W}_{n m}\right\rangle\left\langle\mathcal{W}_{m n}\right\rangle=0
$$

Where $\tau_{m}= \pm 1$ depending if the link is parallel or anti-parallel

Gross-Witten Solution of QCD 2

Choosing Axial Gauge

$$
U_{1}=1
$$

The partition function factorizes

$$
\mathcal{Z}_{2 d} \rightarrow \mathcal{Z}_{1 p}^{N_{p}}
$$

Then all observables are

$$
W_{n}=\left\langle\frac{1}{N} \operatorname{Tr} U_{p}^{n}\right\rangle_{1 p}
$$

Where n is the number of times the plaquette is wrapped around.

QCD 2 loop equation

$$
W_{n+1}-W_{n-1}+2 \lambda W_{n}+2 \lambda \sum_{p=1}^{n-1} W_{p} W_{n-p}=0
$$

Gross-Witten Solution

By choosing a holomorphic generating function $f=\sum_{n=0} z^{n} W_{n}$, where z is within the unit circle, one finds the exact solution

$$
\begin{aligned}
W_{0} & =1 \\
W_{1} & =\frac{1}{2 \lambda}, \lambda \geq 1 \\
W_{1} & =1-\frac{\lambda}{2}, \lambda<1 \\
W_{n+1} & =W_{n-1}-2 \lambda W_{n}-2 \lambda \sum_{p=1}^{n-1} W_{p} W_{n-p}
\end{aligned}
$$

At $\lambda=1$ a third order phase transition was discovered by Gross and Witten, which is unusual in statistical physics. Where the phase transitions usually occur in the infinite volume limit.

A Numerical Approach

- $W_{0}=1$ (from Unitarity) and W_{1} is desired
- $W_{n+1}=P\left(W_{1}\right)$, where $P\left(W_{1}\right)$ is a polynomial derived from the loop equation
- $W_{T}=0$, Truncate loops larger than certain length
- Roots of the polynomial correspond with the upperbound of the value of plaquette

Loop Equation, QCD 2

$$
W_{n+1}=W_{n-1}-2 \lambda W_{n}-2 \lambda \sum_{p=1}^{n-1} W_{p} W_{n-p}
$$

Marchesini's Method

The Large Loop Cutoff QCD $_{4}$

Consider the loop equation in the following form

$$
K_{i \rightarrow j} W_{j}+W_{i}+C_{i \rightarrow j k} W_{j} W_{k}=\frac{1}{2 \lambda} \delta_{i 1}
$$

The equation for $i=1$

$$
\frac{1}{2 \lambda} K_{i \rightarrow j} W_{j}+W_{1}=\frac{1}{2 \lambda}
$$

Truncate up to $L=8$ (33 Wilson loops), taking $i, j>1$

$$
\begin{aligned}
\frac{1}{2 \lambda} K_{i \rightarrow j} W_{j}+W_{i} & =-\frac{1}{2 \lambda} K_{i \rightarrow 1} W_{1}-C_{i \rightarrow 11} W_{1}^{2} \\
\Rightarrow W_{j} & =-(\mathbb{K}+2 \lambda)^{-1}\left(K_{i \rightarrow 1} W_{1}+2 \lambda C_{i \rightarrow 11} W_{1}^{2}\right)
\end{aligned}
$$

Solution of W_{1}

Solution Behavior

Marchesini's Iterative Approach

- To avoid the poles of the \mathbb{K}^{-1} matrix one can iteratively apply \mathbb{K} and then truncate loops that grow too big

$$
\begin{aligned}
W_{i} & =\frac{1}{2 \lambda} \delta_{i 1}-K_{i \rightarrow j} W_{j}-C_{i \rightarrow j k} W_{j} W_{k} \\
W_{i}^{(p)} & =-K_{i \rightarrow j} W_{j}^{(p-1)}-C_{i \rightarrow j k} \sum_{l=1}^{p-1} W_{j}^{(I)} W_{k}^{(I-p)} \\
W_{i}^{(1)} & =\frac{1}{2 \lambda} \delta_{i 1}
\end{aligned}
$$

- Every iteration grows or shrinks the loops, eventually to a plaquette

$$
W_{i}=\left(-\frac{1}{2 \lambda}\right)^{n} K_{i \rightarrow j_{1}} K_{j_{1} \rightarrow j_{2}} \ldots K_{j_{n-1} \rightarrow j_{n}} \delta_{j_{n} 1}
$$

- This is equivalent to strong coupling

The Generalized Method

Consider the following basis

$$
\begin{gathered}
A=\sum_{0 \rightarrow x} c_{i} U\left(\mathcal{C}_{i}\right) \\
\operatorname{Tr}\left(A^{\dagger} A\right) \geq 0 \\
\sum_{i, j} c_{i} \operatorname{Tr}\left(U^{\dagger}\left(\mathcal{C}_{i}\right) U\left(\mathcal{C}_{j}\right)\right) c_{j} \geq 0
\end{gathered}
$$

We can now identify $H_{i j}=\operatorname{Tr}\left(U^{\dagger}\left(\mathcal{C}_{i}\right) U\left(\mathcal{C}_{j}\right)\right)$ which is by definition a positive semi-definite matrix, which is populated with Wilson loops.

The Generalized Method (cont)

$$
H_{i j}=\operatorname{Tr}\left(U^{\dagger}\left(\mathcal{C}_{i}\right) U\left(\mathcal{C}_{j}\right)\right) \succeq 0
$$

- \mathcal{C}_{i} is the path from $0 \rightarrow x$
- All eigenvalues are 0 or positive
- Determinant and leading principal minors are 0 or positive
- All parameters of $H_{i j}$ (Wilson loops) are constrained to a hyper-cone
- When combined with the loop equations the values of the Wilson loops become severely restricted

Applying to QCD $_{2}$

Let

$$
A=\sum_{i=1} c_{i} U_{p}^{i}
$$

This results in $H_{i j}$ being a Toeplitz matrix with the basis $W_{0}, W_{1}, W_{2}, \ldots, W_{n}$.

$$
H_{i j}=\left(\begin{array}{ccccc}
W_{0} & W_{1} & W_{2} & \cdots & W_{n} \\
W_{1} & W_{0} & W_{1} & \ddots & \vdots \\
W_{2} & W_{1} & W_{0} & \ddots & W_{2} \\
\vdots & \ddots & \ddots & \ddots & W_{1} \\
W_{n} & \cdots & W_{2} & W_{1} & W_{0}
\end{array}\right)
$$

Example, $n=2$

The $H_{i j}$ matrix results in the following constraints on the Wilson loops

$$
\left\{W_{1} \leq 1, W_{2} \leq 1, W_{2} \geq 2 W_{1}^{2}-1\right\}
$$

While the loop equation tells us

$$
W_{2}-W_{0}+2 \lambda W_{1}=0
$$

When combined it results in the following

$$
\begin{aligned}
& W_{1} \leq-\frac{\lambda}{2}+\frac{1}{2} \sqrt{4+\lambda^{2}} \\
& W_{1} \leq 1-\frac{\lambda}{2}, \quad \lambda \rightarrow 0 \\
& W_{1} \leq \frac{1}{\lambda}, \quad \lambda \rightarrow \infty \\
& W_{1} \geq 0
\end{aligned}
$$

- bounds keeping up to W_{3} _ lower bound keeping up to $\mathrm{W}_{8}-$ upper bound keeping up to $\mathrm{W}_{8}-\cdot-$ Exact solution

Numerical Solutions to QCD $_{4}$

- The number of Wilson loops are rather large now and grows greatly with the length of the loops
- $L=4 \rightarrow 2$
- $L=6 \rightarrow 5$
- $L=8 \rightarrow 33$
- $L=10 \rightarrow 421$
- $L=12 \rightarrow 9803$
- $L=14 \rightarrow 300000$
- The method of calculating loops is similar. However, they are now computationally much more expensive.
- The basis is also non-trivial and must be formed in such a way to include all loops included in loop equations

Semidefinite Programming

Minimize

$$
\operatorname{Tr}(C X)
$$

such that

$$
\begin{array}{r}
\sum_{i} \operatorname{Tr}\left(A_{i} X\right)=b_{i} \\
X \succeq 0
\end{array}
$$

There are a lot of robust solvers that currently exist and are implemented using convex optimization. However, it can only handle linear problems. Fails when the loops self-intersect.

Single plaquette, upper and lower bounds

Optimizing Calculation

- SDP is extremely efficient at handling linear problems
- Additional loop equations (Loop Bianchi Identity) were included
- The first self-intersecting loop equations (non-linear) enter in at $L=12$. SDP can provide bounds to the loops, which will simplify the numerical calculations
- Selecting the basis is non-trivial and reduce the complexity of the problem greatly

Supersymmertric Lattice Gauge Theory

The $\mathcal{N}=4$ SYM Lattice Action

$S=\mathcal{Q} \Lambda+S_{\text {closed }}$
$\Lambda=\sum_{x} a^{4} \operatorname{Tr}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)$
$S_{\text {closed }}=-\frac{1}{4} \sum_{x} a^{4} \epsilon_{a b c d e} \chi_{d e} \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}$

The SUSY variations are

$$
\begin{aligned}
\mathcal{Q} \mathcal{U}_{a} & =\psi_{a} \\
\mathcal{Q} \psi_{a} & =0 \\
\mathcal{Q} \overline{\mathcal{U}}_{a} & =0 \\
\mathcal{Q} \chi_{a b} & =-\overline{\mathcal{F}}_{a b} \\
\mathcal{Q} \eta & =d \\
\mathcal{Q} d & =0
\end{aligned}
$$

Figure: An example of the sitelinks and fermions in the hypercubic formulation (Catterall).

Applying to SYM $\mathcal{N}=4$

- The lattice action is now much larger and includes fermions
- Computationally much harder to calculate
- The Ward identities from the exactly preserved SUSY charge will enter into the problem.
- These are able to produce a subset of purely bosonic loop equations

Summary

- The numerical methods presented here are able to put tight bounds on the analytic solution in QCD_{2}
- Results obtained so far in QCD 4 suggest that they can be expanded to the non-linear regime which should tighten the lower bound significantly
- For now focus will be on selecting a proper basis that encapsulates all of the necessary constraints
- Future work includes developing the lattice loop equations for lattice $\mathcal{N}=4$ SYM that incorparate the Ward identities and investigating finite N

Questions?

Thank you for your attention

