Zero temperature properties of mesons in a vector meson extended linear
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Abstract. A three flavor linear sigma model with vector and axial-veetesons is discussed. Preliminary
results concerning on the symmetry breaking pattern, tiestgpn of parameterization, as well as the resulting
meson masses are presented.

1 Introduction the tree-level masses are presented with some remarks on
the parameterization. We conclude in Sec. 4.

Effective field theories play a very important role in the in-

vestigation of the strong interaction [1], since in the fand

mental theory (QCD) lots of questions can not be answered2 The model

directly due to the complexity of the model. For instance ) o o

up to now it is still unknown how the mesons and hadrons QUr starting point is théJ, (3) x Ur(3) symmetric linear
are built up from the basic degrees of freedom, namely Sigma model with vector and axial-vector degrees of free-
from quarks and gluons. However, iffective field the- ~ dom, and determined by the following Lagrangian

ories, which possesses the same global symmetries (chiral 5
symmetry) as QCD, the mestvadron spectrum canbein- £ =Tr [(D”@)"’(D”tp)] - mTr(®' @) — A4 [Tr((p"'(p)]

vestigated thoroughly. 2 ; ;
The meson vacuum phenomenology can be analyzed A2Tr [(qs ) ] + c(detd + detd’) + Tr[H(@ + P )]

very well in the framework of linear sigma model [2]. In 1 o2 o mf 02 )

this model the globdl (3)x Ur(3) symmetry of the mass- - ZTr[(L )"+ (RY) ]+ 7-” [(L )+ (R) ]

less QCD is realized linearly. Since tbig(3)xUg(3) sym- & . ) , ) N
metry is broken due to the axial anomaly [3]$a(3) x + ETT(Q’ D)Tr[(LY)" + (R + &Tr[(PR)” + (L1 @)7]
Uv(3), aUa(1) breaking term is introduced into the La- $1u

grangian of the fective model (see [4] and references + 263 T(PR, L) + L3 + La, 1)

therein). The meson fields of the model are placedx83
matrices (nonets), which transforms according to the ad-
joint representation ot (3) x Ur(3). In the present in-
vestigation we use an extended version of the linear sigma 8
model, which includes besides the usual scalar and pseu- &= Z(o-i +im)T;,
doscalar nonets a vector and an axial-vector nonet as well. iz
thus we are taking into account all the low lying mesonic
degrees of freedom. R =
The experimental data on the majority of mesons are
well established [5], however there is still some open ques-
tions. For instance the structure of the scalar mesondlis sti LA
ambiguous [6]. In this paper we present in short our calcu-
lation in the extended linear sigma model concerning on
the meson spectrum. A more complete analysis will come H
shortly [7]. ,
The paper is organized as follows, in Sec. 2 the model  prgp = g#@ — ig, (L' @ — OR) — ieA[Ts, &),
and the symmetry breaking pattern is presented. In Sec. 3 LA = 9ULY — ieAF[Ta, '] — (0"LY — ieA[Ta, L]},

RY = "R’ — ieA'[T3, R] —{0"R' — ieA"[ T3, R]},

where

o

(0} =BT,

(o + BT,

DM 1 1

hT;, (2
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andT; (i = 0...8) are the generators &f(3). Moreover,
o stands for the scalar; for the pseudoscalas| for the
vector, andd!’ for the axial-vector mesons, whik is the
electromagnetic field artg are the constant external fields.
L3 and L4 in Eq. (1) contain three and four couplings of
the diferent fields, the explicit forms of which are irrele-
vant in our present investigation (see e.g. [6]).

In Eq. (1) there is two terms, which breaks the original
UL(3) x Ugr(3) symmetry, namely the fifth term (the de-
terminant term), and the sixth term (the explicit symmetry
breaking term). The first one breaks tbg(1) symmetry,
while the second one breaks the compldig3) if hy # 0
andUy(3) — SUv(2) x Uy(1) if hg # O (for details see
e.g. [4]).

The meson fieldsd, 7, o/, bf) do not have well de-

is not so obvious, since there are more than one candidate
for every scalar fields. In accordance with [6], where the
scalar states were found to be above 1 GeV, we can as-
sign K&*, K30, K20 to the K%(1430), whileaZ, a3 possi-

bly to theag(1450), respectively. In this sector the mixture
of o9 andog can form thefy(1370) andfy(1710) parti-
cles. Since this sector is the most uncertain, we would like
to use as few of them as it is possible for the parameteri-
zation (see Sec. 3), and treat them instead as predictions.
Thept*, p*0 andK**, K*9, K*0 fields represent the(770)

and K*(892) vector mesons, respectively. The remaining
two vector meson fields andpf are the mixture of the
@(1020) andu(782) particles. Finally, the axial-vector me-
son fieldsa:*, & and K4*, K4°, K¥° correspond to the
a1(1260) andK,(1270), respectively, whild; , anda ; are

fined quantum numbers that can be obtained with a blockmixture of f;(1285) andf;(1420).

diagonal transformation of the forfia = Baifi, f € (o, 7,
P4, b)), where

B=diag(37,1,7,7,1), 7= i (1 _I).

e ®)

As A goes from 0 to 8 the components of the meson fields

goes through on the well known physical particles (for in-
stance in case of the pseudoscalagsr*, 7, 7%, K*, K-,
KO, KO, ng), except in the G- 8 sector, where there is mix-

ing between the particles (in case of the pseudoscalars thi

means that only a certain linear combinatiomgfandrg

will be mass eigenstates). For our calculations it is more

suitable to choose another base in the80sector, which is

called the non strange - strange base, and it is given by th

following linear transformation,

fn = V2/3fo + V1/3fs,
fs = V1/3fo — V2/3fs, (4)

wheref € (o, n, p*,b"). To see more explicitly the struc-
ture of thed, L#, R fields, we give their matrix form (see

8,

(on +a3)+i (mn+7°)

. - & +int KK
D= 72 ag +in” —(”N;a“)i/'i(m_*") K +iKO |
Kg + iK™ KQ+iK®  os+ins
0 "
L IJN\'/%IJ0 + all\\l/‘%% p+ + aI K*+ + KI
LH = — - +a pon—=—p° + an—a) K*0 4 KO ,(5)
V2| G e, (B '
K7+KI K +K1 ps + a1s
pn+p® _ a+al + _ ot *_ Y
o 1| 2 P KT
= — — — = an—ay *0 0
o - al enp AN KO Kl
V2 K* - K7 ‘/Kz"‘O - K9 - a
1 1 Ps 1S

The experimentally observed mesons can be assigned to

the above fields as follows;*, 7° and K*, K%, K° corre-
sponds to the well-known piorr(138)) and kaonK (496)),
respectively. Therg, g fields are mixture of they(548)

2.1 Symmetry breaking

In this model the chiral symmetry is broken explicitly (the
sixth term of Eq. (1)) as well as spontaneously. In case
of spontaneous symmetry breaking tHBeetive potential
has its minimum at a non-vanishing value, which corre-
sponds to a non-zero expectation value for some of the

Jields. Since the vacuum has zero quantum numbers the

possible fields are they andog scalar fields [4]. Let us
denote the expectation values f@g and og as &y and
&g, respectively. However, as in case of the fields, it is
ore convenient to use the non strange - strange base (see
g. (4)).
According to the usual process, we shiffy andog
by their vacuum expectation valugs, and @s and sub-
stitute into the Lagrangian. This will result in a technical
difficulty, namely that mixing terms appear among certain
fields in the Lagrangian.

3 Tree-level masses

In order to calculate the tree-level masses after the intro-
duction of the shifts, all the quadratic terms must be con-
sidered, which can be written as,

avad _ _%O_A (5AB(92 N (Wﬁ)AB) o8
~ 27 (sns? + (M) s
- %p/_\p ((—g’”ﬁ2 +0"9")oaB — gﬂv(mg)AB)va
- %bA,, ((~g"0° + 39")0p8 — 9" (M)as) by (6)
- %,OA,; (ig1faBcPcd) o — %O'A (ig1fABcPcO”) pBY

1 1
+ Eb/-\p (910ascPcd') g — >7TA (910ascPc0") by,

andn’(958) particles. In the scalar sector the assignmentwhere
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(M%)as = Mpdas — 6GapcPc + 4F ascp Pc Pp (7)

(M)A = Mpdap + 6GascPc + 4Hag cp PcPp (8)

(mg)AB = MESag + g4 facm feom Pc Pp + 2Jap. co PcPp
)

(M)ag = MESas + g2dacmdepmM Pc Pp + 2Jp8.cpPcPp.
(10)

Here @5 denotes the vectod(y,0,0,0,0,0, 0,0, @s),
while fagc anddagc are the antisymmetric and symmetric
group structure constants transformed by (3), Yigc =
fach;&BgéBgé, anddapc = dach;&BBéBgé The Gagc,
Fascp, Hagcp, Jag.co, andJyg - codiicient tensors con-

tain only the group structure constants and the coupling

constants of the Lagrangian. The first two fiméent ten-
sorsG andF are totally symmetric, whiléd, J, andJ’ are
symmetric in the first two and in the second two indices.

The last four terms of Eq. (6) are mixing terms be-
tween diferent types of mesons. There are two-two terms
for the vector-scalar, and for the axial-vector-pseudiasca
mixing. Using the explicit forms ofagc anddagc the fol-
lowing mixings are present,

TN — dIN : _g1¢NaI1Naﬂ7Z'N,
n—a —gidn (a’l'+6,,7r_ + a‘{oﬁﬂno) + h.c,
s — djs L= \/égl¢sd;_36pﬂ8’ (11)

Ks — K : '971( V25 — pn)(KOHK + KX~9°K$) + hc,

K— K —%((;SN + V2¢5) (K °,K° + K"*8,K") + h.c..

These mixings can be resolved by appropriate transforma

tions for theK** vector and the], aqS/N, andK/ axial-

vector meson fields. The necessary transformations are th

following,

an/S -
%i,o N a;ii,o " walayn_i,o’
Ky — K™ 4wy, 9K =0,
KE® — KE 4wy, KO,
K" — K" + e 0'K¢,
KA~ — K*7 4w, Kg,
K0 — K*© 4wy 9K,

KO — KO 4wk, 0#KQ.

a‘]’_N/S + walN/salln-N/S’

(12)

After transforming the fields with (12) in (6), they coef-

e

constants, however, they can take larger values than 1 [6]
to the contrary of the usual wave function renormalization
constant (see e.g. [9]). Thus in order to get the canonical
scalar propagator form, these fields must be renormalized.
After a straightforward but lengthy calculation, the ffoe
cients are found to be,

Wayy = Wy = gr;ZlN s (13)

V29145
Ways = n’%ls 5 (14)

ig1(on — V2ps)
=2 e 15
wk ot , (15)

g1(dn + V20ps)
== 7> 16
WK, Zmﬁl ) ( )

while the renormalization factors are,
2,22, = —1u (17)

Mg, — 9204
My,
Zyg = (18)
mgls - Zgi(ﬁé
2
Zy = T : (19)
VA~ g2(on + V2ps)?
2

Ze, = L (20)

- g2 - VEssy

Using the following notationsin = A1 + 2/2, A} = A1 +
312/2,andAs = A1 +4, the tree-level pseudoscalar masses
are obtained as

ficients can be determined by requiring the disappearancewhile the scalar masses are,

of the mixed terms. It is important to note that this trans-
formation leads to the appearance of multiplicative factor
in front of the kinetic terms of the, my, s, K, andKsg

fields, in oder words after the transformations they are not

canonically normalized anymore. The multiplicative fac-
tors are denoted &5, Z,,, Z.,, Zx andZx,. These fac-
tors are similar that of the wave function renormalization

C
02 = 22|+ A + 0y - _qss], 21)
V2
Ao C
r’ni = Zi rT% +AN¢§ - 72¢N®S +A5(D§ - EQSN] )
(22)
C
e, = Z2|mg + ANDR + 11 D5 + %qbs}, (23)
e, =72 [+ 1%, + AR (24)
C
n,. = ZnZﬂSTZcDN, (25)
, C
Mg, = Mg + AR DR + 11 D3 + 72@158, (26)
Ao C
Mg, = Z&_ |G+ ANDY + 7Zczqubs + As®3 + SN |
(27)
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Cc
NE, = Mg+ 3ANDE + LD — 75%’ (28)
NE, = Mg + 11Pf + 34:D5, (29)
C
e, = 2PN Ps — $¢N, (30)

where then? _, andm? _ are mixing terms in the non-

strange-strange sector. These mixings can be removed b

orthogonal transformations, and the resulting mass eigen
states are found to be,

(31)

M8 = 5 |, + 12, + (e, e ame |
(32)

e

o =

+ 4ne

ONs

LA AN AN

Using the notation&y = (g5/2+ &1+ &2/2)/2,5s = (95 +
& + &)/2, the vector masses are found to be,

&1

2
1
Mg, = Mi + ENDY + TZCDN@s(fs — %) + 553, (34)

m =g + %(é“l +& +E)DY + S PG, (33)

e = . (@)
mé:m%+%q§,2\,+(§—21+§2+§3)q§§, (36)
and finally the axial-vector meson masses are given by,
M = @b b £ 02 (@)
T, = 4 00} - = sl - ) + Soh. (30
L= (39)
i =m§+§—21cbﬁ+(2g§+§—21+§2—§3)d%. (40)

It is worth to note that in case of vectors and axial-vectors

there are no mixing terms in the non strange-strange sectori 0.

3.1 Parameterization

In order to calculate the tree-level masses in physicasunit

4 Conclusion

We have presented a three flavor linear sigma model with
vector and axial-vector degrees of freedom. Implementing
the spontaneous symmetry breaking in the model yields
not only the knownry-agn and;ri’o—af’O mixings [6] but
also thers-a;s, Ks-K* andK-K; mixings as well. By us-

ing the transformations Eq. (12), and subsequently bring-
ng therns, m, Ks andK derivatives to the canonical form,
the non-diagonal terms in the Lagrangian can be removed,
which leads to the introduction of the pion, kaon, scalar
kaon renormalization cdgcients.Z,, Z,,, Z.s, Zx, and
Zk,. The tree-level masses than can be expressed with the
eleven unknown parameters of the model, which can be de-
termined by using the experimentally well known particle
masses [5] and multi-parametric minimalization. Detailed
analysis of the dferent parameterizations and calculations
of the decay widths of the resonances in the Lagrangian (1)
will be presented in a separate work [7].
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the unknown parameters of the model must be determined.

There are eleven unknown parameters, namglym, c,
g1, A1, A2, &1, &, &3 and the two condensatedy, @s.
Since, there are 14fiierent masses in our model, and all of

them are expressed with these parameters, one can choose
an appropriate set the — experimentally well established —
masses, and treat them as a system of equations for the
parameters. The system of equations can be solved with
multi-parametric minimalization. This work is still ongo-

ing, however some preliminary results can be foundin [10].



