Zero temperature properties of mesons in a vector meson extended linear sigma model

Péter Kovács

KFKI Research Inst. of Part. and Nucl. Phys. of HAS, Theoretical Department

HCBM, 15-20 August 2010

- Motivation for building an effective model
- Sigma model without vectormesons
- Previous results at finite temperature/chemical potentials
- Sigma model with vectormesons
- Mixing, parameterization
- Conclusions

Investigation of the critical endpoint (CEP)

• the CEP is experimentally accessible

- $\mu_B, \mu_I \neq 0$ in heavy ion collision experiments
- μ_B is tunable \rightarrow beam energy, centrality
- μ_I is tunable \rightarrow different isotopes of an element
- In some experiment even μ_Y plays role
- Focusing effect: if CEP exist it cannot be missed

Brookhaven AGS exp. Si+Au collision: at $\mu_B = 540 \text{ MeV} \rightarrow \mu_Y \approx 150 \text{ MeV}$ CERN SPS exp. Pb+Pb collision: at $\mu_B = 233 - 266 \text{ MeV} \rightarrow \mu_Y \approx 70 - 80 \text{ MeV}, \ \mu_I \approx 12 - 13 \text{ MeV}$

CBM exp. at FAIR will explore QCD phase diagram at high μ_B

Analogy to the QCD CEP \rightarrow liquid-gas phase transition which is easy to hit

lattice simulations at finite μ is very difficult \implies not all the methods predict/find the CEP

CEP found at: $(T, \mu_B)_{\text{CEP}} = (162 \pm 2, 360 \pm 40)$ MeV, volume: 12×4^3 and $m_{\pi} = m_{\pi}^{\text{phys}}$

Z. Fodor, S. D. Katz, JHEP 0404:050,2004

it is important to study the CEP and its μ_I , μ_Y dependence in effective models

Investigation of the pion condensation

• Quark matter can exist in neutron stars — at very large bariochemical potential ($\mu_{\rm B} \approx 1~{\rm GeV}$)

If the isospin chemical potential is also different from zero \longrightarrow possibility of pion condensation

• In heavy ion collisions μ_I is tunable with different isotopes of an element

Neutrino emission from pion condensed quark matter \rightarrow direct Urca processes:

$$d \to u + e^- + \bar{\nu}$$
$$u + e^- \to d + \nu$$

 \implies It might be investigated experimentaly

Sigma model without vectormesons

$$\mathcal{L} = \operatorname{Tr}(\partial_{\mu}\Phi^{\dagger}\partial^{\mu}\Phi - m_{0}^{2}\Phi^{\dagger}\Phi) - \lambda_{1}\left(\operatorname{Tr}(\Phi^{\dagger}\Phi)\right)^{2} - \lambda_{2}\operatorname{Tr}(\Phi^{\dagger}\Phi)^{2} + c\left(\operatorname{det}(\Phi) + \operatorname{det}(\Phi^{\dagger})\right) + \operatorname{Tr}(H(\Phi + \Phi^{\dagger})) + \bar{\psi}\left(i\partial \!\!\!/ - g_{F}\Phi_{5}\right)\psi.$$

$$\Phi = \sum_{i=0}^{8} (\sigma_i + i\pi_i) T_i, \ \Phi_5 = \sum_{i=0}^{8} (\sigma_i + i\gamma_5\pi_i) T_i, \ H = \sum_{i=0}^{8} h_i T_i$$

pseudo(scalar) fields: π_i , σ_i , constituent quark field: $\overline{\psi} = (u, d, s)$ (optional) U(3) generators: $T_0 := \frac{1}{\sqrt{6}}\mathbf{1}$, $T_i = \frac{\lambda_i}{2}$ $i = 1 \dots 8$.

determinant breaks $U_A(1)$ symmetry explicit symmetry breaking: external fields $h_0, h_8 \neq 0 \iff m_u = m_d \neq 0, m_s \neq 0$ or $h_0, h_3, h_8 \neq 0 \iff m_u \neq m_d \neq 0, m_s \neq 0$

broken symmetry phase: non-zero condensates $(\langle \sigma_0 \rangle, \langle \sigma_8 \rangle) \longleftrightarrow (\Phi_N, \Phi_S)$ or $(\langle \sigma_0 \rangle, \langle \sigma_8 \rangle), \langle \sigma_3 \rangle \longleftrightarrow (\Phi_N, \Phi_S), \Phi_I$

 Φ_N : non-strange, Φ_S : strange

technical difficulty: mixing in the 0,8 or 0,3,8 sector

parameters determined from the T = 0 mass spectrum

The optimized perturbation theory (OPT)

At finite temperature tree level mass squares can become negative \rightarrow some sort of resummation is needed

Using the optimized perturbation theory (OPT):

- a temperature dependent mass term introduced in the Lagrangian
- the difference is treated as a higher order counterterm
- the new mass parameter determined by the FAC criterion $(m^{1-\text{loop}} = m^{\text{tree}}) \rightarrow \text{can be transformed to an equation for a resummed particle mass}$
- conserves Ward–identities

Results at zero μ_I, μ_Y : critical surface and CEP

The second order surface bends towards the physical point \implies The CEP must exist

The continuation is reliable up to $m_K \approx 500$ MeV and above the diagonal

The CEP at the physical point of the mass plane

P. Kovács, Zs. Szép: Phys. Rev. D 75, 025015

- $T_{CEP} = 74.83 \text{ MeV}$ $\mu_{B,CEP} = 895.38 \text{ MeV}$
- $T_c \frac{d^2 T_c}{d\mu_B^2}\Big|_{\mu_B=0} = -0.09$

- $T_c(\mu_B = 0) = 151(3) \text{ MeV}$ $\Delta T_c(\chi_{\bar{\psi}\psi}) = 28(5) \text{ MeV}$ Y. Aoki, et al., PLB 643, 46 (2006)
- $T_{CEP} = 162(2) \text{ MeV}$ $\mu_{B,CEP} = 360(40) \text{ MeV}$
- -0.058(2)Z. Fodor, et al., JHEP 0404 (2004) 050

Dependence of the $\mu_{B,CEP}$ on the width of the susceptibility

Preliminary lattice estimation by S. Katz: $\Delta T_c(\chi_{\bar{\psi}\psi}) \approx 0.5 - 1 \text{ MeV}$ $\Delta T_c(\chi_{\bar{\psi}\psi}) \approx 2 - 4 \text{ MeV}$

Since $\Delta T_c(\chi_{\bar{\psi}\psi}) \approx 28$ MeV at the physical point \longrightarrow higher $\mu_{B,CEP}$ expected

Tree-level and 1-loop pole masses

P. Kovács, Zs. Szép: Phys. Rev. D 77, 065016

Dependence of the CEP on μ_I, μ_Y

P. Kovács, Zs. Szép: Phys. Rev. D 77, 065016

 T_{CEP} is almost independent of μ_Y , but significantly depend on μ_I

 $\mu_{B,CEP}$ has an almost linear dependence on both other chemical potential

As μ_Y is increased the phase transition at T = 0 becomes stronger

Critical surface of pion condensation

The second order boundary for the occurrence of the pion condensation in the $\mu_{\rm I} - \mu_{\rm B} - T$ space from the two flavoured sigma model:

T. Herpay, P. Kovács: Phys. Rev. D 78,116008

condensation starts at $\mu_I = 131$ MeV at zero temperature

Sigma model with vectormesons

$$\begin{split} \mathcal{L} &= \mathrm{Tr} \left[(D^{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \right] - m_{0}^{2} \mathrm{Tr} (\Phi^{\dagger} \Phi) - \lambda_{1} \left[\mathrm{Tr} (\Phi^{\dagger} \Phi) \right]^{2} - \lambda_{2} \mathrm{Tr} \left[(\Phi^{\dagger} \Phi)^{2} \right] \\ &+ \mathrm{Tr} \left[H (\Phi + \Phi^{\dagger}) \right] + c (\det \Phi + \det \Phi^{\dagger}) - \frac{1}{4} \mathrm{Tr} \left[(L^{\mu\nu})^{2} + (R^{\mu\nu})^{2} \right] \\ &+ \frac{m_{1}^{2}}{2} \mathrm{Tr} \left[(L^{\mu})^{2} + (R^{\mu})^{2} \right] - 2ig_{2} (\mathrm{Tr} \{ L_{\mu\nu} \left[L^{\mu}, L^{\nu} \right] \} + \mathrm{Tr} \{ R_{\mu\nu} \left[R^{\mu}, R^{\nu} \right] \}) \\ &- 2g_{3} \left[\mathrm{Tr} \left\{ (\partial_{\mu} L_{\nu} - ieA_{\mu} [T_{3}, L_{\nu}] + \partial_{\nu} L_{\mu} - ieA_{\nu} [T_{3}, L_{\mu}] \right\} \{ L^{\mu}, L^{\nu} \}) \\ &+ \mathrm{Tr} \left\{ \{ \partial_{\mu} R_{\nu} - ieA_{\mu} [T_{3}, R_{\nu}] + \partial_{\nu} R_{\mu} - ieA_{\nu} [T_{3}, R_{\mu}] \} \{ R^{\mu}, R^{\nu} \}) \right] \\ &+ \frac{\xi_{1}}{2} \mathrm{Tr} (\Phi^{\dagger} \Phi) \mathrm{Tr} \left[(L^{\mu})^{2} + (R^{\mu})^{2} \right] + \xi_{2} \mathrm{Tr} \left[(\Phi R^{\mu})^{2} + (L^{\mu} \Phi)^{2} \right] + 2\xi_{3} \mathrm{Tr} (\Phi R_{\mu} \Phi^{\dagger} L^{\mu}) . \\ &+ g_{4} \left\{ \mathrm{Tr} \left[L^{\mu} L^{\nu} L_{\mu} L_{\nu} \right] + \mathrm{Tr} \left[R^{\mu} R^{\nu} R_{\mu} R_{\nu} \right] \right\} + g_{5} \left\{ \mathrm{Tr} \left[L^{\mu} L_{\mu} L^{\nu} L_{\nu} \right] + \mathrm{Tr} \left[R^{\mu} R_{\mu} R^{\nu} R_{\nu} \right] \\ &+ g_{6} \mathrm{Tr} \left[R^{\mu} R_{\mu} \right] \mathrm{Tr} \left[L^{\nu} L_{\nu} \right] + g_{7} \left\{ \mathrm{Tr} \left[L^{\mu} L_{\mu} \right] \mathrm{Tr} \left[L^{\nu} L_{\nu} \right] + \mathrm{Tr} \left[R^{\mu} R_{\mu} R_{\nu} \right] \right\} , \end{split}$$

where

$$D^{\mu}\Phi = \partial^{\mu}\Phi - ig_1(L^{\mu}\Phi - \Phi R^{\mu}) - ieA^{\mu}[T_3, \Phi]$$

$$\begin{aligned} R^{\mu} &= \sum_{i=0}^{8} (\rho_{i}^{\mu} - b_{i}^{\mu}) T_{i} \\ L^{\mu} &= \sum_{i=0}^{8} (\rho_{i}^{\mu} + b_{i}^{\mu}) T_{i} \\ L^{\mu\nu} &= \partial^{\mu} L^{\nu} - ieA^{\mu} [T_{3}, L^{\nu}] - \{\partial^{\nu} L^{\mu} - ieA^{\nu} [T_{3}, L^{\mu}]\} \\ R^{\mu\nu} &= \partial^{\mu} R^{\nu} - ieA^{\mu} [T_{3}, R^{\nu}] - \{\partial^{\nu} R^{\mu} - ieA^{\nu} [T_{3}, R^{\mu}]\} \end{aligned}$$

particles:

- scalars: $a_0(980), K_s(1425), f_0(1370), f_0(1710)$ (or $f_0(600), f_0(980)$)
- pseudoscalars: $\pi(138), K(496), \eta(548), \eta'(958)$
- vectormesons: $\rho(775), K^{\star}(893), \omega(783), \Phi(1020)$
- axialvector-mesons: $a_1(1230), K_1(1272), f_1(1170), f_1(1426)$
- \longrightarrow All the mesons up to $\sim 1~{
 m GeV}$ are taken into account

Spontaneous symmetry breaking and field mixing

 $\langle \Phi \rangle = T_i v_i \Longrightarrow \sigma_i \to \sigma_i + v_i$, only v_0 and v_8 are nonzero $(v_3 = 0 \to \text{isospin symmetry})$

Quadratic terms after shifting σ_i :

$$\mathcal{L}^{quad} = -\frac{1}{2}\sigma_a(\partial^2\delta_{ab} + (m_\sigma^2)_{ab})\sigma_b - \frac{1}{2}\pi_a(\partial^2\delta_{ab} + (m_\pi^2)_{ab})\pi_b$$
$$-\frac{1}{2}\rho_a^{\mu}\left[(-g_{\mu\nu}\partial^2 + \partial_{\mu}\partial_{\nu})\delta_{ab} - g_{\mu\nu}(m_\rho^2)_{ab}\right]\rho_b^{\nu}$$
$$-\frac{1}{2}b_a^{\mu}\left[(-g_{\mu\nu}\partial^2 + \partial_{\mu}\partial_{\nu})\delta_{ab} - g_{\mu\nu}(m_b^2)_{ab}\right]b_b^{\nu}$$
$$-\frac{1}{2}\rho_a^{\mu}(g_1f_{abc}v_c\partial_{\mu})\sigma_b - \frac{1}{2}\sigma_a(g_1f_{abc}v_c\partial_{\mu})\rho_b^{\mu}$$
$$-\frac{1}{2}b_a^{\mu}(g_1d_{abc}v_c\partial_{\mu})\pi_b + \frac{1}{2}\pi_a(g_1d_{abc}v_c\partial_{\mu})b_b^{\mu}$$

Mixing in the 0-8 sector for every field and mixing between $\rho_a^{\mu} \leftrightarrow \sigma$ and $b_a^{\mu} \leftrightarrow \pi \implies$

For instance the pseudoscalar-axialvector mixing matrix

$$\begin{pmatrix} d_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & d_{08} \\ 0 & 0 & d_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & d_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & d_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & d_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & d_4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & d_4 & 0 \\ d_{08} & 0 & 0 & 0 & 0 & 0 & 0 & d_8 \end{pmatrix}$$

where $d_0 = \frac{\sqrt{6}}{3}v_0$, $d_1 = \frac{\sqrt{6}}{3}v_0 + \frac{\sqrt{3}}{3}v_8$, $d_4 = \frac{\sqrt{6}}{3}v_0 - \frac{\sqrt{3}}{6}v_8$, $d_8 = \frac{\sqrt{6}}{3}v_0 - \frac{\sqrt{3}}{3}v_8$, $d_{08} = \frac{\sqrt{6}}{3}v_8$

The mixing terms can be written in a much simpler form if the base is switched from 0 - 8 to the non-strange-strange base

 \longrightarrow This will result in the appearence of wave function renormalization constants: $Z_{\pi}, Z_{\eta}, Z_{\eta'}, Z_K, Z_{K_s}$

Parameterization

Unknown parameters of the model are: $m_0^2, m_1^2, c, g_1, \lambda_1, \lambda_2, \xi_1, \xi_2, \xi_3$ and the two condensates: $\Phi_N, \Phi_S \longrightarrow 11$ parameters

 \longrightarrow With these parameters all the tree level masses as well as every wave function renormalization constants can be expressed

For instance:

$$m_{\pi}^{2} = Z_{\pi}^{2} \left[m_{0}^{2} + \left(\lambda_{1} + \frac{\lambda_{2}}{2} \right) \Phi_{N}^{2} + \lambda_{1} \Phi_{S}^{2} - \frac{c}{\sqrt{2}} \Phi_{S} \right]$$
$$Z_{\pi} = \frac{m_{a_{1}}}{\sqrt{m_{a_{1}}^{2} - g_{1}^{2} \Phi_{N}^{2}}}$$

There is 14 different mass from 16 \longrightarrow it can be choosen 11 to determine the parameters (with multiparametric minimalization)

Conclusions and outlook

- Lots of intresting phenomena/physical quantity can be investigated with the linear sigma model, like particle spectra, temperature and chemical potential dependence of the masses, the CEP, pion/kaon condensates, decay width, scattering lengthes, etc.
- The vector meson extended linear sigma model contains every diquark degrees of freedom up to $\sim 1~{\rm GeV}$
- The particle mixing can be resolved, which introduce wave function renormalization to some of the mesons
- Low lying scalar particle is problematic \longrightarrow it may be not a $q\bar{q}$ state \longrightarrow further investigation is needed
- In the future: finite temperature/chemical potential investigations with the vectormeson extended sigma model