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Motivation II

We are interested in the study of non-equilibrium phenomena (transient or
stationary) of long wavelength (fluid dynamic limit), where the dissipative fluxes,
heat flux, diffusion flux and viscous pressure tensor, play an important role, e.g.,
Navier-Stokes equations, since the 1820’s.

The study of non-equilibrium phenomena from kinetic theory started since the
1850’s, Maxwell, Boltzmann, Hilbert, Chapman, Enskog, Grad, etc. The resulting
equations and coefficients are calculable from (relativistic) kinetic theory, e.g., in
the dilute gas limit.

We aim for a macroscopic theory consistent with the principles of relativity and
thermodynamics, since the 1940’s, Eckart, Taub, Landau, Lifsitz, Müller, Israel,
Stewart, etc.

Nowadays, we aim to understand the role of dissipation in high-energy heavy-ion
collisions!
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Notation

We work in flat space-time, the metric is gµν ≡ gµν = diag(1,−1,−1,−1).

The normalized 4-flow of matter is denoted by uµ(t, x), where
uµuµ = 1, (c2 = 1).

The local rest frame (LRF) is defined as, uµ = (1, 0, 0, 0).

We define the projection tensor, perpendicular to the 4-flow of matter,
∆µν = gµν − uµuν , where ∆µνuµ = 0, and ∆µν∆µν = 3.

The comoving time-derivative or time-derivative in LRF of A is denoted by,
Ȧ = uµ∂µA.

The comoving spatial-derivative or gradient in LRF of A is denoted by,
∇µA = ∆µν∂νA.

The symmetric, traceless and orthogonal part of a tensor is denoted by,

A〈µν〉 =
[

1
2

(

∆µ
α∆

ν
β +∆ν

α∆
µ
β

)

− 1
3
∆µν∆αβ

]

Aαβ .
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Perfect Fluids I.

Conservation laws for a simple (single component) perfect fluid (no dissipation)

∂µN
µ
0 = 0 charge conservation ⇒ 1 eq.

∂µT
µν
0 = 0 energy-momentum conservation ⇒ 4 eqs.

Perfect fluid decomposition with respect to uµ

N
µ
0 = n0u

µ

T
µν
0 = e0u

µuν − p0∆
µν

n0 = N
µ
0 uµ (net)charge density in LRF

e0 = T
µν
0 uµuν energy density in LRF

p0 = −1

3
∆µνT

µν
0 isotropic pressure in LRF

We only have 5 equations for 6 unknowns: n0(1), e0(1), p0(1) and uµ(3). These
equations are postulated ! but they are not closed!
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Perfect Fluids II.

The assumption of local thermal equilibrium! Provides closure:

Equation of State (EoS)

p0 = p0(e0, n0) EoS ⇒ 1 eq.

and/or p(T , µ) or s = s(e, n).

Auxiliary, Sµ
0 = s0u

µ, where s0 = S
µ
0 uµ, and for continuous solutions

∂µS
µ
0 = 0

entropy is maximum in local thermal equilibrium, with no entropy production!

The fundamental thermodynamic relations from
T∂µ(suµ) = ∂µ(euµ) + p(∂µuµ) − µ∂µ(nuµ)

Ts = e + p − µn

T ṡ = ė − µṅ
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Dissipative Fluids I.

Conservation laws for a simple (single component) dissipative fluid

∂µN
µ = 0 charge conservation ⇒ 1 eq.

∂µT
µν = 0 energy-momentum conservation ⇒ 4 eqs.

Dissipative fluid decomposition with respect to uµ

Nµ = nuµ + Vµ

Tµν = euµuν − (p + Π)∆µν +W µuν +W νuµ + πµν

n = Nµuµ charge density in LRF

e = Tµνuµuν energy density in LRF

p + Π = −1

3
∆µνT

µν isotropic + bulk viscous pressure in LRF

Vµ = ∆µαNβ charge flow in LRF

W µ = ∆µαTαβu
β energy-momentum flow in LRF

qµ = W µ − e + p

n
Vµ heat flow in LRF

πµν = T 〈µν〉 stress tensor in LRF

We only have 5 equations for 18 unknowns, n(1), e(1), p(1), uµ(3) and
Π(1),Vµ(3),W µ(3), πµν(5).
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Dissipative Fluids II.

Simplifications: Matching conditions and EoS

n = n0

e = e0

p(e, n) = p0(e0, n0) EoS ⇒ 1 eq.

These are the most convenient since they extend T = T0 and µ = µ0 for
non-equilibrium, but the entropy changes! For other matching possibilities see for
example, Pavon, Biró, Ván.

Fixing the LRF

u
µ
E

= Nµ/n ⇔ Vµ = 0 ⇒ qµ = W µ Eckart ⇒ 3 eqs.

u
µ
L

= TµνuLν/e ⇔ W µ = 0 ⇒ qµ = − e + p

n
Vµ Landau & Lifsitz ⇒ 3 eqs.

One of these choices eliminates, but at the same time relates uµ to, Vµ or W µ.

We are still left with 14 unknowns! n(1), e(1), uµ(3) and Π(1), qµ(3), πµν(5).
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Dissipative Fluids III.

The relativistic Navier-Stokes theory

The definition of entropy is also modified Sµ ≡ S
µ
0 + δSµ = (s0 + δs)uµ +Φµ,

where s ≡ Sµuµ = (s0 + δs) and Φµ = ∆µνSν

2nd law of thermodynamics (Eckart’s frame)

∂µS
µ ≡ ∂µ

[

Φµ −
(

qµ

T

)]

− qµ

T

(

1

T
∂µT − u̇µ

)

− Π

T
∂µu

µ +
πµν

T
∂µuν ≥ 0

Assuming that s(e, n) = s0(e0, n0), Φ
µ = qµ/T and gradients are small

Relativistic Navier-Stokes values

ΠNS = −ζ ∇µu
µ

πµν
NS

= 2 η∇〈µuν〉

q
µ
NS

= −κT
T n

e + p
∇µ

( µ

T

)

ζ ≥ 0, η ≥ 0 bulk and shear viscosity, κ ≥ 0 thermal conductivity, coefficients.

Now the eqs. are closed, but the rel. Navier-Stokes theory lead to accausal signal
propagation and stability issues
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Dissipative Fluids IV.

2nd order theories of Müller (1967), Israel (1976) and Stewart (1971, 1977)
The previously mentioned issues are ”cured” if:

Entropy current generalization (Eckart’s frame)

Sµ ≡ s0u
µ +

qµ

T
−

(

β0Π
2 − β1q

µqµ + β2π
µνπµν

) uµ

2T

− α0Πqµ

T
+

α1πµνqν

T
+O3

where the newly introduced coefficients β0, β1, β2, α0, α1 are related to the
relaxation time/length of bulk viscosity, heat conductivity and shear viscosity

τΠ = ζβ0

τq = κTβ1

τπ = 2ηβ2

lΠq = ζα0

lqΠ = κTα0

lqπ = κTα1

lπq = 2ηα1

The β0, β1, β2, α0, α1 coefficients are frame dependent and remain undetermined
in phenomenological theories!
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Dissipative Fluids V.

2nd order equations from entropy production

Relaxation equations in Eckart’s frame (Israel 1976)

τΠΠ̇ + Π = ΠNS + lΠq∇µq
µ

τq∆
µ
αq̇

α + qµ = q
µ
NS

+ lqΠ∇µΠ− lqπ∆
µ
α∂νπ

αν

τππ̇
〈µν〉 + πµν = πµν

NS
+ lπq∇〈µqν〉

The equations determine the time evolution of Π, qµ, and πµν

The Navier-Stokes theory appears if the relaxation times and length scales
τi → 0, li → 0 with ζ, η and κq fixed

Later O2 corrections (∼ ∇µαi ,∼ ∇µβi , . . ., etc.) were added by Israel and
Stewart (1977-1979), Hiscock and Lindblom (1983), Relativistic Extended
Thermodynamics of Liu, Müller and Ruggeri (1983) etc.

Higher order O3 corrections in the entropy current, by A. El et. al. (2008), A.
Muronga (2009)

We need kinetic theory to motivate and determine the above introduced
phenomenological equations self-consistently!
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The relativistic Boltzmann equation

In a dilute gas, the space-time evolution of the single-particle distribution function
fk = f (t, x, k0, k) due to particle motion and binary collisions is given by the

The relativistic Boltzmann equation

kµ∂µfk =
1

2

∫

dK ′dPdP′Wkk′→pp′

(

fpfp′ f̃k f̃k′ − fkfk′ f̃p f̃p′
)

where kµ = (k0, k) is the four-momenta of particles with energy k0 =
√
k2 +m2 and

m is the mass of particles. The inv. phase-space element is, dK = gd3 k/
[

(2π)3k0
]

.
The transition rate W is invariant to final state momenta Wkk′→pp′ = Wkk′→p′p and
to the time reversal symmetry of the collision Wkk′→pp′ = Wpp′→kk′.

Conservation laws from the Boltzmann equation

∂µN
µ ≡

∫

dK kµ∂µfk =

∫

dK C [fk] = 0 charge cons.

∂µT
µν ≡

∫

dK kνkµ∂µfk =

∫

dK kνC [fk] = 0 energy-momentum cons.

Conservation laws are obtained, but we still need the solution of the Boltzmann
equation fk!
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The hierarchy of moments and balance equations

Moments of the single-particle distribution function and collision integral

Nµ(t, x) ≡
∫

dK kµ fk = 〈kµ〉 charge current

Tµν(t, x) ≡
∫

dK kµkν fk = 〈kµkν 〉 energy-momentum tensor

Fµ1...µn (t, x) ≡
∫

dK kµ1 . . . kµn fk = 〈kµ1 . . . kµn 〉 n-rank moment

Pµ1...µn (t, x) ≡
∫

dK kµ1 . . . kµn C [fk] = 〈Cµ1...µn 〉 n-rank production term

where 〈pµ1pµ2 . . . pµn−1pµn 〉 ⇒
∫

dK pµ1 . . . pµn fk.
The mass-shell condition kµkµ = m2 gives

F
µ1...µnλ
λ

= m2Fµ1...µn

P
µ1...µnλ
λ = m2Pµ1...µn

∂λF
µ1...µnλ = Pµ1...µn balance of fluxes

These balance equations are never closed but the solution of the Boltzmann equation
is also a solution of the hierarchy!
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Kinetic decomposition and matching

Decompose the momenta, kµ = Eku
µ + k〈µ〉, where Ek = kµuµ and k〈µ〉 = ∆µ

νk
ν

Decompositions

Nµ = 〈Ek〉uµ + 〈k〈µ〉〉

Tµν = 〈E2
k 〉uµuν +

1

3
∆µν〈∆αβkαkβ〉+ 〈Ekk

〈µ〉〉uν + 〈Ekk
〈ν〉〉uµ + 〈k〈µkν〉〉

Definitions

n ≡ 〈Ek〉
e ≡ 〈E2

k 〉
Vµ ≡ 〈k〈µ〉〉

p +Π ≡ −1

3
〈∆αβkαkβ〉

W µ ≡ 〈Ekk
〈µ〉〉

πµν ≡ 〈k〈µkν〉〉
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Local thermal equilibrium

In local thermal equilibrium fk → f0k, f0k(x
µ, kµ) = f (α, β,Ek)

f0k ≡ [exp (−α0 + β0Ek) + a]−1

where α0 = µ0/T0 is the chemical potential, β0 = 1/T0 is the inverse temperature,
Ek = kµuµ, and a = 0 for Boltzmann, a = 1 for Fermi, a = −1 for Bose statistics.
f0k is not a solution of the Boltzmann eq., since C [f0k] = 0 but kµ∂µf0k 6= 0

∂µ〈kµ〉0 ≡ (∂µα0) 〈kµ〉0 + (uν∂µβ0) 〈kµkν〉0 − (β0∂µuν) 〈kµkν〉0 = 0

where 〈pµ1 . . . pµn 〉0 ⇒
∫

dK pµ1 . . . pµn f0k.

Laws of equilibrium thermodynamics: Boltzmann gas (a=0)

ṅ0 + n0∇µu
µ ≡ n0α̇0 − e0β̇0 + β0p0∇µu

µ

n0 = β0p0 (ideal gas law)

ṅ0 = n0α̇0 − e0β̇0

Introducing the entropy s0 = (e0 + p0)β0 − n0α0 leads to ṡ0 = β0ė0 − α0ṅ0.
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Out of equilibrium

For systems out of equilibrium fk = f0k + δfk

Equilibrium fields

n0 ≡ 〈Ek〉0
e0 ≡ 〈E2

k 〉0
Vµ ≡ 〈k〈µ〉〉0 = 0

p0 ≡ −1

3
〈∆αβkαkβ〉0

Π = 0 ,

W µ ≡ 〈Ekk
〈µ〉〉0 = 0

πµν ≡ 〈k〈µkν〉〉0 = 0

Out of equilibrium fields

n ≡ 〈Ek〉
e ≡ 〈E2

k 〉
Vµ ≡ 〈k〈µ〉〉 = 〈k〈µ〉〉δ

p + Π ≡ −1

3
〈∆αβkαkβ〉

Π = −1

3
〈∆αβkαkβ〉δ ,

W µ ≡ 〈Ekk
〈µ〉〉 = 〈Ekk

〈µ〉〉δ
πµν ≡ 〈k〈µkν〉〉 = 〈k〈µkν〉〉δ

where 〈. . .〉δ ≡ 〈. . .〉 − 〈. . .〉0 =
∫

dK . . . fk −
∫

dK . . . f0k =
∫

dK . . . δfk

Matching: Non-equilibrium to equilibrium

〈Ek〉δ = 0 ⇒ n = n0

〈E2
k 〉δ = 0 ⇒ e = e0

−1

3
〈∆αβkαkβ〉δ = Π ⇒ p(e, n) = p0(e0, n0)
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Approximate solutions: Grad’s method of moments

The previous definitions from kinetic theory are only useful if we can specify fk or δfk

fk = f0k + δfk ' f0k (1 + φk)

where φk = δfk/f0k � 1 close to equilibrium.

Relativistic Grad’s approach: Stewart (1972), Israel and Stewart (1977-1979)

φk ≡
∞
∑

l=0

ε
µ1...µl

(l)
kµ1 ...kµl

= ε(0) + εµ
(1)

kµ + εµν
(2)

kµkν + . . .

Assuming that in φk only l = 0, 1, 2-rank tensors appear λ(1), λµ(4) and λµν(9)
where λµ

µ = 0, we provide a closure for the hierarchy (truncation) and be able to
determine the 14 moments of dissipative fluid dynamics!
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Applying the 14-method

Non-equilibrium 14-moment ansatz

fk ≡ f0k

[

1 + ε(0) + Ekε
µ

(1)
uµ + ε

〈µ〉
(1)

k〈µ〉 + E2
k ε

µν

(2)
uµuν +

1

3

(

∆αβkαkβ

)

∆µνε
µν

(2)

+ Ekε
〈µ〉ν
(2)

k〈µ〉uν + Ekε
〈µ〉ν
(2)

k〈ν〉uµ + ε
〈µν〉
(2)

k〈µkν〉

]

which is basically an expansion in En
k and k〈µ1

. . . kµn〉

Decomposition and matching

ε(0) − α0 = A0Π

εµ
(1)

uµ − β0 = A1Π

εµν
(2)

uµuν = A2Π

ε
〈µ〉
(1)

= B0q
µ + B1V

µ

ε
〈µ〉β
(2)

uβ = C0q
µ + C1V

µ

εµν
(2)

= A3(3u
µuν −∆µν)Π + 2C0u

(µqν) + 2C1u
(µV ν) +D0π

µν

ε
〈µν〉
(2)

= D0π
µν

The coefficients ε(0), ε
µ

(1)
, εµν

(2)
expressed in terms of dissipative fields, Π, qµ(Vµ), πµν
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The relaxation equations

Using the 14-moment ansatz, the 3rd moment, 〈kµkνkλ〉 = F (e, n, p, uµ,Π, qµ, πµν),
therefore, using the Boltzmann transport eq., ∂λ〈kµkνkλ〉 = 〈Cµν〉, we get:

Israel-Stewart (1979)

uµuν∂λ〈kµkνkλ〉 = uµuν〈Cµν〉 Bulk eq.

∆α
µuν∂λ〈kµkνkλ〉 = ∆α

µuν〈Cµν〉 Heat-flow eq.

∆αβ
µν ∂λ〈kµkνkλ〉 = ∆αβ

µν 〈Cµν〉 Shear viscosity eq.

The linearised collision integral

uµuν〈Cµν〉 = CΠΠ

∆α
µuν〈Cµν〉 = Cqq

α

∆αβ
µν 〈Cµν〉 = Cππ

αβ

where CΠ,Cq ,Cπ ∼ 〈σ〉
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The ”exact” relaxation equations

The original Israel-Stewart derivation neglected several terms. Later correction have
been added: Muronga (2007), Betz et. al. (2009).

τΠ Π̇ + Π = ΠNS + τΠq q · u̇ − `Πq ∂ · q − ζ δ̂0 Π θ

+ λΠq q · ∇α + λΠπ πµνσµν

τq ∆µν q̇ν + qµ = qµ
NS

− τqΠ Π u̇µ − τqπ πµν u̇ν

+ `qΠ ∇
µΠ − `qπ ∆µν ∂λπνλ + τq ω

µν qν −
κ

β
δ̂1 q

µ θ

− λqq σ
µν qν + λqΠ Π∇µα + λqπ πµν ∇να

τπ π̇<µν> + πµν = π
µν
NS

+ 2 τπq q<µu̇ν>

+2 `πq ∇
<µqν> + 2 τπ π

<µ
λ

ων>λ − 2 η δ̂2 π
µν θ

− 2 τπ π
<µ

λ
σν>λ

− 2λπq q<µ
∇

ν>α + 2λπΠ Πσµν

W. Israel, J.M. Stewart, Ann. Phys. 118 (1979) 341
W. Israel, J.M. Stewart, Ann. Phys. 118 (1979) 341
A. Muronga, PRC 76 (2007) 014909; A. Muronga, ibid.
B. Betz, D. Henkel, D. H. Rischke, Prog. Part. Nucl. Phys. 62:556 (2009);
J. Phys. G36:064029, (2009).
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Further corrections

Take into account 2nd order corrections in the collision integral, i.e.,
C [f0 + δf ] ∼ δf + (δf )2

Full collision integral: Rischke et.al. (2010)

uµuν〈Cµν〉 ∼ CΠΠ + A0Π
2 + A1V

µqµ + A2q
µqµ + A3π

µνπµν

∆α
µuν〈Cµν〉 ∼ Cqq

α + B0Πqα + B1ΠVα + B2qµπ
µα + B3Vµπ

µα

∆αβ
µν 〈Cµν〉 ∼ Cππ

αβ + C0Ππαβ + C1q
〈αV β〉 + C2q

〈αqβ〉 + C3π
α
λπ

βλ

some terms also by Moore (2009)

Problem with the traditional moment method

uµ1 . . . uµn∂λ〈kµ1 . . . kµnkλ〉 = uµ1 . . . uµn 〈Cµ1...µn 〉
∆α

µ1
uµ2 . . . uµn∂λ〈kµ1 . . . kµnkλ〉 = ∆α

µ1
uµ2 . . . uµn 〈Cµ1...µn 〉

∆αβ
µ1µ2

uµ3 . . . uµn∂λ〈kµ1 . . . kµnkλ〉 = ∆αβ
µ1µ2

uµ3 . . . uµn 〈Cµ1...µn 〉

Parts of higher order moments may contribute for Π, qµ, πµν , so why stop ?
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New method: Denicol et.al. (2010)

Rel. orthogonal polynomials: Stewart (1976), GeGroot (1980), Denicol et. al. (2010)

φk ≡
∞
∑

l=0

λ
〈µ1...µl 〉
(l)

k〈µ1
...kµl〉

= λ(0) + λ
〈µ〉
(1)

k〈µ〉 + λ
〈µν〉
(2)

k〈µkν〉 + . . .

λ
〈µ1...µl 〉
(l)

=
∞
∑

n=0

c
〈µ1 ...µn〉
(n)

n
∑

r=0

a
(l)
(nr)

E r
k Orthogonal and energy dependent

The 14-moment closure: c(0,1,2) ∼ Π, c
〈µ〉
(0)

∼ Vµ, c
〈µ〉
(1)

∼ Vµ + qµ and c
〈µν〉
(0)

∼ πµν

Generalized irreducible moments and exact equations of motion: Denicol et. al. (2010)

ρ
µ1...µl

(r)
=

∫

dK E r
kk

〈µ1 ...kµl 〉δfk

ρ̇(r) =
d

dτ

∫

dK (Ek)
r δfk,

ρ̇
〈µ〉
(r)

= ∆µ
ν

d

dτ

∫

dK (Ek)
r k〈ν〉δfk,

ρ̇
〈µν〉
(r)

= ∆µν
αβ

d

dτ

∫

dK (Ek)
r k〈α k β〉δfk

δḟk = −ḟ0k − E−1
k kν∇ν f0k − E−1

k kν∇νδfk + E−1
k C [f ]
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Conclusions

The 14-moments closure leads to the equations of motion for the dissipative fields
consistent with the phenomenological 2nd order theories of fluid dynamics

We have taken into account all 2nd order terms some of which have been
neglected in the early days (Betz et. al. 2009)

2nd order terms form the collision integral (Rischke et. al. 2010), now the 2nd
order theory of Israel and Stewart can be done even better

Different methods and assumptions lead to formally the same equations of
motions (formal consistency) but the coefficients are different (Denicol et. al.
2010) (

∫

dK →
∫

dKE r
k )

Now, we have an even large family of dissipative fluid dynamical models!

Important! All 2nd order theories relax to the Navier-Stokes form, hence all
novelties are not expected to be observed on large time-scales, only the important
ones ζ, κ and nowadays favourite η

Remember, we only calculate dilute gases from the Boltzmann equation
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