The effect of the Polyakov loop on the chiral phase transitio n
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Abstract. The Polyakov loop is included in tH&U (2). x SU(2)r chiral quark-meson model by considering the
propagation of the constituent quarks, coupled to ther) meson multiplet, on the homogeneous background
of a temporal gauge field, diagonal in color space. The madsblived at finite temperature and quark baryon
chemical potential both in the chiral limit and for the ploadivalue of the pion mass by using an expansion in
the number of flavorsl;. Keeping the fermion propagator at its tree-level, a resutioman the pion propagator

is constructed which resums infinitely many orders jiN{d, whereO(1/N;) represents the order at which the
fermions start to contribute in the pion propagator. Theugrice of the Polyakov loop on the tricritical or the
critical point in theuq — T phase diagram is studied for various forms of the Polyakop lootential.

1 Introduction Some solutions of the Polyakov loop extended quark-
meson model (PQM) appearing in the literature completely

The low-energy ffective models of the QCD, such as the disregard quanturiects. The ectofincluding the quan-
tum fluctuation in the PQM model was recently studied

Nambu—Jona-Lasinio (NJL) model and the chiral quark- . : : A
meson model (QM), are based on the global chiral sym-"" [4-6] using functional renormalization group methods
metry of the QCD. They are very useful to qualitatively and also |n.[7], where It was shown that the |ncI.US|on of
understand many aspects related to the spontaneous breaf{—:e quctuat|o_ns has a 3|gn|f|car_i1fesct on the Iocat|on_ of
ing of the chiral symmetry and its restoration at finite tem- the C.EP'. which is pushed to higher values.gf In th|_s
perature and density. However, the absence of gluonic ef_contrlbuthn WE review the results.on th@_ T phase dia-
fective degrees of freedom and the lack of color clustering gram obtam_ed in [7] as aresult of mclqdmgférent forms
alter the reliability of the quantitative thermodynamiepr  ©' the éfective Polyakov loop potential, as compared to

dictions of these models, such as the equation of state orihosﬁ previol\ljlsly pbt?;]ned in [8] int_the cfhtirr]al Iimitt Ok]; t?_e
the location of the critical end point (CEP) in thg - T WO Tlavor Q using the resummation ot the perturbative
phase diagram. series provided by the larg¥s approximation. Starting

Some information on the quark confinement can be in- with the @-derivable formalism, the approximations done

corporated in theféective models through arffective de- to parametrize and solve the model are also discussed.
gree of freedom, the Polyakov loop, which is a good order

parameter for the deconfinement phase transition in the ab- ) . .

sence of dynamical quarks. The coupling of the Polyakov 2 The model in the large- Ny approximation

loop to the chiral &ective models mimics theflect of

confinement by statistically suppressing at low tempera- The ingredients for the PQM model are the £) meson
ture the contribution of one- and two-quark states relative multiplet and the constituent quark fieldgoupled to them.

to the three-quark states. This feature makes the PolyakovThese latter propagate on the homogeneous background of
loop extended féective models more appropriate for the a temporal gauge field. In order to be able to use a large-
description of the low-temperature phase and for quan- Nt expansion we considéd; constituent quarks and cor-
titative comparison with the thermodynamic observables respondinglyN — 1 pions (YN = N;). Performing some

on the lattice [1-3]. Better agreement is expected up torescaling withN¢ (see [7, 8] for details), which assures the
T = (1.5-2)T. above which the transverse gluonic degrees finiteness of the tree-level constituent quark mags= gv

of freedom dominate in thermodynamic quantities, such asasN¢ — oo, the Lagrangian of the model reads after sep-
the pressure, over the longitudinal ones represented by therating the vacuum expectation valulé; of the o field

Polyakov loop.
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Where,o2 = o2 + 72 and the tree-level sigma and pion

masses are¥, = n? + ?/2 andng, = n? + 4?/6. Ag

is the temporal component of the gauge field, taken to be

constant in the mean-field approximation.

2.1 The grand potential in the  @-derivable
approximation

At finite temperaturd = 1/, after analytical continuation
to imaginary timet — ir, Ag — Ay, the grand partition
functionZ and the grand potentig)(T, ug) of the spatially

uniform system defined by (1) are defined as

— A(Ho(As) + Hint — usQs) |} = €72, (2)

whereug is the baryon chemical potentidl;, is the inter-
acting part of the Hamiltonian constructed from (1). The
A4-dependent free Hamiltoniady(A4) for two quark fla-
vorsu andd reads

Z= tr{ exp[

Hdmyﬂ%+jﬁ&ﬁ@umﬁm@+mkmw¢uﬁ
3
whereHy is the quadratic part of the Hamiltonian at van-
ishing A, andi, j denotes color indices. In the so-called
Polyakov gaugé\, is diagonal in color space, thatAg =
diag@-, #—, —(¢+ +¢-)). The conserved baryon char@g

appearing in (2) can be expressed in terms of the particle

number operators adg

3
%'21 Nq,i, with Nq'i = Nyi +
i=

Ngi — Ngi — Ng; ande.g. Nyj = fd3x(u;"ui + di'"di). Then,
combiningHp(A4) andugQg, the dfect of fermions propa-
gating on the constant backgroufy diagonal in the color
space is like having imaginary chemical potential for color
Following Ref. [9], one introduces color-dependent chem-
ical potential for fermions

ids, u3= Mg + i(@+ +¢-), (4)

whereuq = ug/3 is the quark baryon chemical potential.

M12 = Hgq —

Then, introducing the notatio{ = Hg — Zﬂ. Ng,i, one

can writeZ as a path integral over the f|elds generically
denoted by

Z:emof[Z)?’]{e‘”HPexp[—foﬁdrHim(T)]}
f [Dw|e?™

whereQy is the grand potential of the unperturbed system
with fermions having color-dependent chemical potential

eh% = f |Dy|e ™.

. (5)

(6)

In the @-derivable approximation of Ref. [10], which
is also called two-patrticle irreducible (2P1) approxinoatj
the grand potential2 = Q[G,,G,,G,v, @, d] is a func-
tional of the full propagators and field expectation values
of the form :

Z 4~ Nh
24” v

~(N-1), fk InG;(K) + D795, (0]

BQ = U(®, cD)+—mzv +N

- IE fk |InG1(K) + D (KG,(K)]
+ VNitrpc fk ING™(K) + DM (KG(K)| + Izpr, (7)

where the trace is taken in Dirac and color space. The tree-
level propagators of the pion, sigma, and constituent quark
fields are

(k) =K —n?

/o0

iD-%

/o IDil(k) = K - mq, (8)
while G,, G,, and G are the respective full propagators
in terms of which the set of 2Pl skeleton diagrams de-
noted byl op; = I'op[Gy, Gy, G, v, D, di] is constructed. To

O(1/ YN) accuracy this is given by

Fopr = N%( [ Gn(k))2+ 35 [6:® fp Go(p)
- iifn(k)—i—fm(l—fn(k))
1, fe o [0

1- 1(K)/6
m_mm f f 5G(K)ysG(K + P)Gx(p)

+—|trDc f f GGk + PG (p),  (9)

where the notatiof/ (k) = —i fG,,(p)G,,(k+ p) was intro-

duced. The mesonic part ﬁ‘fsz contains the 2P| diagrams
of theO(N) model as given in Eq. (2.13) and Figs. 2 and 4
of [11] and also in Eq. (48) and Fig. 2 of [12]. Notice that
the contribution of the fermions goes with fractional pow-
ers of N and intercalates between the leading order (LO)
and next-to-leading order (NLO) contributions of the pi-
ons, which go with integer powers b

2.2 The mean-field Polyakov-loop potential

U(®, ®) appearing in (7) represents one of th&eatient
versions of &ective Polyakov-loop potentials defined in
the literature foruq = 0, where|®| = |@|. The simplest
effective potential is of a Landau type, constructed with
terms consistent with th&; symmetry [13]:

ﬂ4 ﬂp0|y((b, cg) == bzgr)

P — %(@3 +@%) + E(czacB)Z,
(10)
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where the temperature-dependentfiornt which makes  the Ty parameter of the Polyakov-loojffective potential
spontaneous symmetry breaking possible is was parametrized aBo(ug, Ni) = T, exp1/(aob(ug))).
The parameters were chosen to h@yg: = 0, Ny = 2) =
20864 MeV. When using the Polyakov loojffective po-
tential givenin (10) and (12) we will consider in addition to
To = 270 MeV two more cases, one with a constant value
To is the transition temperature of the confinenj@eton- T, = 208 MeV and the other with the above-mentioned
finement phase transition, in the pure gauge thdary= ug-dependent, taken atN; = 2.

270 MeV. The parametess, i = 0,..., 3 andbs, b, deter-
mined in [14] reproduce the data measured in [Big3)
lattice gauge theory for pressure, and entropy and ener . .
densititgas. \?Vhen us)i/ng tf?is potential in eitheP%/he PNJL o%yz'?’ Th? propagator and field equations and the

the PQM models the minimum of the resulting thermody- approximations made to solve them

namic potential is atb > 1 for T — oo, which is not

in accordance with the value coming from the definition We are interested in the equations for the two-point func-

B(X) = (treL (X)) /Ne with L(x) = Pexp[i foﬁ drAl(r, x)]. tions and the field equations, which are given by the sta-

_ ) M tionary conditions
An effective potential for the Polyakov loop inspired
by a strong-coupling expansion of the lattice QCD action 0Q 62 62 62 62  oQ

bo(T) = a0 + al(%) + az(%)2 + en(%)g . (A1)

was derived in [15]. Using the part coming from 86 (3) 5G oG, oG, o0 oD 5D 0. (15)
Haar measure of group integration affieetive potential
was constructed in [16] In each of these equations the contribution of the fermions
3 1 3 3 is kept only at LO in the largéd; expansion. This contri-
B Uog(D, D) = —Ea(T)chi +b(T)In (1 - 609 bution isO( VN) in the field equations ob and®, O(1) in
3 =3 -5 the equation for the fermion propaga®yandO(1/ VN)
+ 427 + @°) - 3(0D)?), (12)  in the remaining equations, that is the field equation, of
] ] and the equations @, andG,,.
with the temperature-dependent fiogents The second line of (9) does not contribute to any of the

equations at the order of interest, and the second term on

2 3
a(T) = ap+ay (E)Jraz(E) , b(M= bg(E) . (13) the right hand side of (9) contributes only in the equation
T T T of the sigma propagator
The parameters, i = 0,1, 2 andbs reproduce the thermo- 5
dynamic quantiti_es in _the purgU (3) gauge theory mea- iG;%(p) = iD;%(p) + "4 fGn(k)
sured on the lattice. Since the logarithnlifiug(®, @) di- 3 6k
verges a®, ® — 1 the use of thisféective potential guar- A 1 ig?
antees tha®, & — 1 for T — co. T3 1-1(p)/6 \/—NtrD,C kG(k)G(k+ p). (16)

A third potential is the one determined in Refs. [15]:

_ AT — In fact, G, will not appear in any of the remaining five
B Ui ®, D) = ~b|54e¥ TP + In (1 - 60D equations. Nevertheless, it plays an important role in the
+ AP+ 53) _ 3(@5)2)] ’ (14) parametrization of the model, as discussed in Sec. 2.4.
In the imaginary time formalism of the finite temper-

where the temperature of the deconfinement phase transi2{Ur field theory, which we use for calculation, the four-

tion in pure gauge theory is controlled hywhile b con- ~ Momentum i = (iwn, k), where the Matsubara frequen-

trols the weight of gluonicféects in the transition. In this ~ CI€S @réwn = 27nT for bosons, while for fermions they
case, the parameteais= 664 MeV andb = (1962MeV)? depend also on the color due to the color-dependent chem-

are obtained from the requirement of having a first order i(cal potentialy; introduced in (4) and are given ly, =

transition at about = 270 MeV [17,2]. 2n + DT — iy. Th_e meaning of the integration symbol

It was shown in [17] that there is little fierence in ~ €ncountered so far is then
the pressure calculated from the thrékeetive potentials WK
for the Polyakov loop in their validity region up ® = f: iT Z f =iT Zf—3 (17)
(1.5 - 2)T.. The presence of dynamical quarks influences k n Jk n (2r)
an dfective treatment based on the Polyakov loop which _
in this case is not an exact order parameter. Definffare The dependence o and @ of the fermionic trace-log
tive Polyakov-loop potentials for nonvanishing chemical term inthe grand potenti& and of the quark-pion setting-
potential when®| # |@| is somewhat ambiguous [2]. Nev-  sun inl2p results from the fact that, after performing the
ertheless, ati; # 0 we use theZz symmetric Polyakov-  Matsubara sum, the color trace can be expressed in closed
loop potentials given above and include theeet of the form in terms of the mean-fielk{independent) Polyakov
dynamical quarks along the lines of [2], where using renor- loop @ and its conjugate. The big diterence is that while
malization group arguments ti andyy dependence of  in case of the trace-log the result can be expressed in terms
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of a modified Fermi-Dirac distribution function
((Z + 2q3e—ﬁ(E—l‘q)) e BE-1q) 4 g 3B(E—puq)

1+3 ((Z + @e*ﬁ(E*ﬂq)) e BE-uq) 4 @3B(E—uq) ’
. _(18)
and a similar expression fdi; (E), but with @ < & and

fo(E) =

Hq < —Hg, in case of the setting-sun integral the result does

not allow for an interpretation in terms of distribution fn
tions, as shown in the Appendix of [7] between Egs. (A35)
and (A37).

Due to the complexity of the problem, the set of cou-

pled equations coming from (15) is only solved using some

approximations described below.

1. As a first approximation we disregard the self-con-
sistent equation for the fermions arising fre®/6G = O,
that is

iG™(k) = iD‘l(k)—ingpysG(p)yan(p—k)» (19)

and simply use the tree-level fermion propagdigk) in

the remaining five equations. Within this approximation
the field equation ob and the pion propagator simplify
considerably. The contribution of the last but one term of

(9) to the pion propagator breaks up upon working out the

Dirac structure into the linear combination of a fermionic
tadpoleT (my) and a bubble integrdlp; my). Introducing
the propagator

o9 = 7~ (20)
these integrals are defined as
N 1 &
LEY | oot (21)
. 15[,
fprmg) = = > [=i | Do(q)D .22
CLOREDY [ po@sa+ )| @2

In terms of these integrals given between Egs. (A11) and

(A18) of the Appendix of [7], where the sum over the color
indices is explicitly done, one obtains

h=v n12+%(v2+j|;G,r(k))—4

9°Ne =
S T(rm)] (23)

s ~—1 _ 2_ _4 1)2 492Nc~
Gk = K - n? 6( +fkcsn(k))+—m F(my
- _Zg\;l_'\\llc K21 (p; my) . (24)

By making use of the field equation forin the equation
for the pion propagator one finds thé*(k = 0) = —h/o,
which means that the Goldstone theorem is fulfilled. Un-
fortunately, it turns out that this is only accidental, bhesa
the Ward identity relating the inverse fermion propaga-
tor and the proper verteK,a,; = 53I/sydyon® (seee.q.

Eq. (13.102) of [18])

[ S N _
~5Talrs1G D) = vy [5RFeus 0. 0.-D). (25)

is satisfied only with tree-level propagators and vertices.
The relation above is violated at any order of the perturba-
tion theory in the largeNs approximation, for in view of
(19) the corrections to the inverse tree-level fermion prop
agator are oD(1), while the corrections to the tree-level
m — i —  vertex are suppressed byNL The feature is
probably a shortcoming of our way of implementing the
largeN; scaling in (1), and we could not find a way to
overcome it.

2. A further approximation concerns the self-consistent
pion propagator (24). In [7] several approximations@&yr
were discussed, here we consider only two of them.

In the chiral limit a local approximation is obtained by
parametrizing the pion propagator as

Gri(p) = PESIVER (26)

which is then used in all of the equatiom4? is determined
from M? = —iG,}(p = 0), which gives the gap-equation

4g2Nc ~
_ T .
VN F(my)

The subscripF denotes the finite part of the cdfaegu-
larized integrals defined in Egs. (21) and (22). In view of
the field equation (23) in the chiral limit = O, one has
M2 = 0. We note that due to their self-consistent nature,
when (27) is solved, a series containing all orders/ofil

is in fact resummed.

In the case of a physical pion mass, in addition to the
local approximation (26) and (27) for the pion propagator,
a nonlocal approximation is derived using an expansion to
0(1/ VN) in the expression of the pion propagator (24) ob-
tained after exploiting the field equation®f23):

M2 = n? + g (v + Te(M)) (27)

i 29°N, 1p?Ie(p; mg)
G(p) =
DTETETW (eoty

v

+O(%).(28)

With this form of the pion propagator the field equation for
v reads

292 Nc

m + %(vZ+TF(M))+ N Jr (M, my)
2 ~
Ty =7, (29)

where in this casé? = h/v and we have introduced the
integral

IM,my) = -i fp PP (pmy).  (30)

Solving this equation for shows that this approximation
also resums infinitely many orders it ¢N.

Before proceeding we note that, since our approxima-
tion is not self-consistent, we do not attempt to do a proper
renormalization by constructing the counterterms which
absorb the divergences of the integrals. It was shown in [7]
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that even when a strict expansion inIN is performed 7 : ‘ ‘

in the pion propagator equation, due to the fact that the ',\C/’Ig(f'\/'L/Mo) """"

fermion propagator is unresummedifdient subseries of 6 Mpg=885 MeV r f;/fﬂ R
o'n

the counterterms are needed to cancel the subdivergences
of different equations. Here we retain the finite parts of the
integrals obtained using cufaegularization. We refer the
interested reader to [7] for details.

2.4 Parametrization

We need to determine the mass parametérthe cou- Pets
plingsg, A of the Lagrangian (1), the renormalization scale =~ 0 —=— ; ; ‘ ; ; ;
Mog, the vacuum expectation valug= v(T = O, uq = 0), 0 100 200 300 400 500 600 700 800
and the external fieldd, which vanishes in the chiral limit. A
This is done all = uq = 0 using in addition to the pion  Fig. 1. The 1 dependence of the real and imaginary parts of the
decay constant, = 93 MeV, pion massn, = 140 MeV, complex sigma polgy = M, —il,/2 and of the Landau ghost
and the constituent quark mass taken tdvkg= my/3 = M in the chiral limit and for the physical pion mass indicated
313 MeV some information coming from the sigma sector, with labelh # 0 on the curvesM_ is shown only in this latter
such as the mass and the width of the sigma particle andcase, for in the chiral limit there is very littleféérence.
the behavior of the spectral function.

vp is determined from the matrix element of the axial
vector current between the vacuum state and a one-pion
state, which due to the rescaling of the vacuum expectation
value by\/N givesuvg = f;/2 for Ny = 2. The value of the
Yukawa couplingy = 6.7 is obtained by equating the tree-
level fermion massng = gvo with My. The parameters
andMgg are determined from the sigma propagator, as wil
be detailed below. Having determined them, in the chira
limit n? is fixed from the field equation aof, and in the
case of the physical pion mas¥ is determined from the
gap equation by requiringl? = mZ, andh is obtained from
the field equation fov, when the local approximation of The solution forM,- andr",, is shown in Fig. 1 both in
the pion propagator is used, while when the approximationthe chiral limit (1 = m, = 0) and for theh # 0 case. Sim-
(28) for G, is usedhiis fixed by requiringh = muo, and jlar to the case of th@(N) model studied in Ref. [19], in
n¥ is determined from the field equation of the chiral limit the value oM, is a little smaller and the

In order to fix4 andMog, one uses in (16) the tree-level  ya|ye ofr",, larger than in thé # 0 case. Comparing Fig. 1
fermion propagator, the field equation fo(23), and the  \jith Fig. 2 of Ref. [19] obtained in th©(N) model, that
local approximation (26) for the pion propagator, which s without fermions, theM,(1) curve moved slightly up-
means that in the case of a physical pion mass we neglec{yard, but the",-(1) curve moved significantly downward,
for simplicity the second term of (29). After working out \hich means that in the present case the phenomenologi-
sigma propagator: for any value of the coupling. Another diference is that
for low values ofa there are two poles d&, on the neg-

propagator analytically continued between the two cuts to

| the second Riemann sheet in the fa@y*(po = ke, p =

| 0) = 0. The pole is parametrized ag = M, —il",-/2, with
the real and imaginary parts corresponding to the mass and
the half-width of the sigma particle.

2
iG,Y(p) = p? - D _Aat 1 ative imaginary axis in contrast to only one such pole in
v 3 1-Alg(p;M)/6 the O(N) model. These poles approach each othet ims
29°Ne e creases and after they collide at a given valug thfere are
+ VN (4G - P*)ie (P my). (31)  two complex poles at highet, one with positive and one

with negative real part. The imaginary part of the complex

The integral(p; M), obtained using the local approxima- pole having positive real part is shown in Fig. 1 for the
tion (26) for the pion propagator witM? = m?, can be renormalization scal&lps = 885 MeV. As explained in
found in Egs. (10) and (11) of [19] witMo replaced by  the study done in the chiral limit in [8] for lower values of
Mog, while I (p; mg) is given in Egs. (A16)-(A18) of [7]. the renormalization scale the scak of the lower Lan-

The self-energy has both in the chiral linhit = 0 and dau ghost on the imaginary axis comes even closdfto
for M = m, two cuts along the positive real axis of the and as a result the spectral function of the sigma is heavily
complexpp plane. These are above the thresholds of the distorted. In order to avoid this and based on the ratio of
pion and fermion bubble integrals, which starpat= 4M? M, /T we have chosen = 400 andMgg = 885 MeV. For
andp? = 4m§, respectively. Above these thresholds the re- these valued, = 456 MeV andl', = 221 MeV in the
spective pion and fermion bubble integrals have nonvan-chiral case, whileM,, = 474 MeV andl', = 152 MeV for
ishing imaginary parts. We search for poles of the sigma the case of a physical pion mass.
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3 The puq— T Phase diagram

The thermodynamics is determined by solving the field
equationsj.e. (23) and the equations giving the depen-
dence onT andyyq of the two real mean field$ and &,
which, when the full fermion propagator is replaced by the
tree-level one have the form:

du (@, D) K (dft(E) df=(E)
do _2N°mfk3_|zk( g@ ZQD )
. df» d7#2
+9° VNN [Z(T,Q(mq) - Te(M)) d;m‘*) + Zd;”h)
dsAi(Mm, dsp2(M,
—MZ( (S@mq)+ (§¢%))=o, (32)

whereE, = (k? + mg)% and M satisfies the gap equation
(27) or the relatiorM? = h/v. The other equation is simi-
lar to (32), the only dterence is that the derivative is taken
with respect tod. The integral in (32) is the contribution
of the fermionic trace-log integral, while the term propor-
tional with ¢ is the contribution of the quark-pion two-
loop integral in (9) given in Eq. (A35) of [7]. This term
is disregarded for simplicity when solving the field equa-
tions for @ and @, and only in one case (see the last row

180

160 FrmTT i
140 ¢ 1
120 ¢ 1
g 100 N 1
= | ST
6o L deconfinement SO\ ]

---= chiral 2" order AN\
40 1 — 1% order N,
20 b spinodal N

o x TCP

0 50 100 150 200 250 300 350
Hq [MeV]

Fig. 2. Phase diagrams obtained in the chiral limit without and
with the inclusion of the Polyakov loop. The former has lower
Trcp and for the latter we used|og(®, @) with To = 208 MeV
(upper curves) and witfip(ug) (Middle curves). The deconfine-
ment transition line is obtained from the inflection point&(T).

Polyakov-loop potential. With the inclusion of the Polya-
kov loopT, (uq = 0) andT+cp increase significantly com-
pared with the values obtained earlier in [8] without the
Polyakov loop, but it has littleféect on the value ofiq".

of Table 2) the complete equation (32) is solved in order This increase in the value df,(uq = 0) is basically de-
to estimate the error made by neglecting it in all the other termined by the value of the parameTerof the Polyakov

cases.
The tricritical point (TCP) and the critical end point

loop potential, while the value oftcp shows no signifi-
cant variation among fferent cases having the same value

(CEP) are identified as the points along the chiral phase©f To. One can also see, that as explained in [17], the use

transition line of the—T phase diagram where a 1st order
phase transition turns with decreasjaginto a 2nd order
or crossover transition, respectively. In case of a crassov
the temperatur&, of the chiral transition is defined as the
value where the derivativdv/dT has a minimum (inflec-
tion point of v(T)), while the temperatur@&y of the de-

of the polynomial and logarithmicfiective potentials for
the Polyakov loop, that is (10) and (12), drags the value
of T, (uq = 0) closer to the value of the parameTgrthan
the use olUJguku(@, @) given in (14). In this latter case one
obtains the smallest value fokcp.

For To = 270 MeV the deconfinement transition line

confinement transition is obtained as the location of the in theuq — T phase diagram is above the chiral transition

maximum ind®/dT. The transition point in the case of

line in all three variants of thefkective potential for the

a 1st order phase transition is estimated by the inflectionPolyakov loop. When the logarithmidtective potential

point located between the turning points of the multival-
ued curven(ug) obtained for a given constant temperature.
Although the precise definition of the 1st order transition

Uiog(@, @) is used either with a constan = 208 MeV or
with the uq-dependent proposed in [2] one find$y <
T, atuq = 0, but at a given value of the chemical potential

point is given by that value of the intensive parameter for the deconfinement transition line crosses the chiral transi

which the two minima of theféective potential are degen-

erate, we adopt the definition based on the inflection point

because we compute only the derivatives of tifeative
potential with respect to the fields and propagators.

3.1 Phase transition in the chiral limit

In the chiral limit we solve the field equation (23) using
the local approximation to the pion propagator (26) with
M? = 0 and neglect the term proportional wigh in (32).
The critical temperature of the chiral transitidp and the
pseudocritical temperatuig of the deconfinement tran-

sition at vanishing chemical potential, and the location of
the TCP are summarized in Table 1 for various forms of the

U@2) | To [ T,0) ] Ta) [ (T,uq)tce
- | - J13.0] - [ (60.7,277.0)
poly 270 || 185.6 | 229.0 | (104.5,261.8)
poly 208 || 168.2| 176.5| (96.2,263.4)
log 270 191.4| 209.0 | (109.4,261.2)
log 208 167.6 | 162.4 | (102.6,261.2)
log | Tolug) || 167.9] 162.8| (84.3,266.9)
Fuku - 176.5| 193.0 | (99.8,262.2)

Table 1. The (pseudo)critical temperaturé,§ T, of the (decon-
finement) chiral transition and the @t = 0, and the location of
the TCP in units of MeV obtained in the chiral limit withouteth
Polyakov loop (first row) and with the inclusion of the Polgak
loop using variousfective potentials summarized in Sec. 2.2.
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tion line and remains above it for higher valueggf This 200 : : : : : : ,
is shown in Fig. 2, where the deconfinement transition line
is obtained from the inflection point @(T). In contrast to
the case of constaily, where basically the deconfinement
transition line is not iected by the increase pf, with a
Hq-dependerit, the deconfinement transition line strongly

bends, staying close to the chiral line. The two lines cross g 1

just above the TCP. = il
In the case wheffip(uq) is used, the lowering of the de- |

confinementtransition results in the shrinking of the ragio

of theuq — T plane for whichT, < T < Tq, already ob- 40 | deconfinement 1

served in Ref. [21]. Since the quantity measuring the quark 20 --- 1% order ) 1

content inside thermally excited particles carrying baryo ol . CFR ‘ ‘ ‘ P

0 50 100 150 200 250 300 350 400

number shows a pronounced change along the chiral phase
transition line of this region, the region was identified in

[17] with the SO'Ca”eP' quarkyonlp phase, a ponflnlng state Fig. 3. Phase diagrams obtained for the physical value of the pion

made of quarks and is qharaCte”Zed by a high quark NUM-mass with the inclusion of the Polyakov loop. For the chiraht

be_r density and baryonic (three-quark state) thermal exci-jiion line which starts at highd for uq = 0 we usedJ poiy (<, @)

tations. with To = 208 MeV and (28) for the pion propagator, for the other
Comparing our results on the phase diagram to thosetwo phase diagrams we used the local approximation for the pi

obtained in the chiral limit of the PNJL model one can no- propagator antoq(P, &) with Ty = 208 MeV (middle curves)

tice differences of both qualitative and quantitative nature. and withTo(uq) (lower curves). The deconfinement transition line

Inthe nonlocal PNJL model of Ref. [22] the deconfinement is obtained from the inflection point @b(T).

phase transition line startsgaf = 0 below the chiral transi-

tion line both for a polynomial and a logarithmic Polyakov-

loop efective potential withly = 270 MeV, so thatthe two  various forms of the Polyakov-loop potential reviewed in

transition lines cross at finitg,. In our case this happens  Sec. 2.2. Increasing the temperatufedecreases and the

only for the logarithmic potential witfip = 208 MeV, as first order chiral restoration becomes a crossover at a much

Hq [MeV]

can be seen in Fig. 2. In [22, 23] the valuesTpfuq = 0) lower temperatur@cep than in the chiral case. The inclu-
andTrcp are much larger than in our case, while the value sion of the Polyakov loop increases significantly the value
of #gcp is similar to ours. of Tcep, but, as in the chiral case, it has littl&ect on the

value ofuSEP. Neither the choice of thefiective potential

for the Polyakov loop nor the value @f has a significant
3.2 Phase transition with a physical pion mass effect on the value ofSEP. The result in the last row was

obtained by keeping in the field equation of the Polyakov

In the approximation (28) for the pion propagator, which loop (32) and its conjugate the contribution of the quark-

resum infinitely many orders in/WN, the phase transi- pion setting-sun diagram, while in all other cases only the
tion atT = 0 turns with increasing ’ from a crossover pontnbuﬂon of.the fermionic trace-log was kept. Compar-
type into a first order transition at sqome valie > M ing the result in the last row of Table 2 with that of the

and in consequence there is a CEP inthe T phase d?é\- second row obtained using the polynomial Polyakov-loop

gram. The numerical results are summarized in Table 2 forPOtential, one sees that the error we make by neglecting the
setting-sun contribution in all other cases is fairly small

The values ofT, and Ty at uq = 0 are mostly in-

U@ [ To [T,O[T© [ I, | (T.ugcep fluenced by the choice of the Polyakoffextive poten-

— | - [[1586] - | 40.7 | (135,3286) tial and the valug oflp : they d_ecre_ase with .the. decrease
poly 270 || 212.5] 2174 283 | (32.9,328.8) of To and by using the_ logarithmic potgntlal ms?ead_of
poly 208 || 184.6 | 176.8| 22.3 | (30.6,328.8) the polynomial one. Uslng the ponr)(_)mlgl pqtentlal with
log | 270 || 209.7| 209.3| 12.0 | (34.5,329.0) To = 270 MeV the confinement transition line in thg-T
log 208 || 1685 167.1| *43.0 | (33.0,328.9) plane is above the phlra_\l transition I_me. As in the_ch|ral
Euku = 1952 | 191.3| 21.2 | (31.8,328.8) case, when a logarithmic potential is used with either a

fixed valueTo = 208 MeV or with auq-dependenily,

poly | 208 188.1] 183.1] 21.4 .| (32.2,329.0). the deconfinement transition line startsugt= 0 below

Table 2. The temperature, andTq of the chiral and deconfine-  the chiral one and the two lines cross at some higher value

ment transitions, the half-width at half maximuf of —dv/dT of uq. This can be seen in Fig. 3. Whéig(ug) is used the

atyq = 0 (in the case marked with due to the asymmetric shape g [ines go together until they cross each other just above

of —dv/dT, the full width is given) and the location of the CEP in  {na |ocation of the CEP. Thig,-dependent, gives the

units of MeV obtained using (28) for the pion propagator ith |, yest value off cep, similar to the results reported in [24]

and with the inclusion of the Polyakov loop. The contribatiuf and [6]. Because of the much lower value of fgp the

EE: Ic;us?;'l(()-v?/lon setting-sun was keptin (32) only for the ssti g iiing of the quarkyonic phase is more pronounced than
' in the chiral case, as the deconfinement transition lines ap-
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proaches thg, axis. This is even more the case here, with 6.
a physical pion mass, since the deconfinement transition
is a crossover and as such it happens in a relatively large7.
temperature interval. However, the quarkyonic phase doesS.
not vanish completely as happens in [6], where quantum
fluctuations are included using functional renormalizatio 9.
group methods.

10.

4 Conclusions

Using the tree-level fermion propagator and some approx-12.

imations for the self-consistent pion propagator obtained
within a largeN¢ expansion, we studied in tH&U (2). x

for the physical value of the pion mass, the influence of

the Polyakov loop on the chiral phase transition. When the 15.
local part of the approximate pion propagator resums in- 16.

finitely many orders in IN; of fermionic contributions

it is possible to find a CEP on the chiral phase transition 17.
line of theuq — T phase diagram. The inclusion of the 18.

Polyakov loop potential has a significarffext on Tcgp
and practically no #ect onug=" obtained in the original

chiral quark-meson model, that is which does not contain 19.

the Polyakov loop. Using the logarithmic fortheg(®, ®)
of the dfective potential for the Polyakov loop with pa-
rameterTo = 208 MeV a crossing between the chiral and

deconfinement transition lines was observed, with the lat- 21.

ter line starting afiq = 0 slightly below the former one. In

this case the existence of the quarkyonic phase is possible22.

It was shown in [7] that the result of resumming in
the pion propagato®(1/ VN) fermionic fluctuations ob-
tained with a strict expansion iy &N, while keeping the

fermion propagator unresummed, the phase transition soft-24.

ens to the point that there is no CEP in the- T phase di-
agram within a range & pq < 500 MeV. For this reason it

is an interesting question to what extent our results on the
existence and location of the CEP would be modified by
the use of the self-consistent propagator for fermions, and
also by considering the more realis&tJ (3). x SU(3)r
chiral quark-meson model.
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